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Abstract: This paper describes the comparison between 

adaptive filtering algorithms that is least mean square 

(LMS), Normalized least mean square (NLMS),Time 

varying least mean square (TVLMS), Recursive least 

square (RLS), Fast Transversal Recursive least square 

(FTRLS). Implementation aspects of these algorithms, 

their computational complexity and Signal to Noise ratio 

are examined. These algorithms use small input and output 

delay. Here, the adaptive behaviour of the algorithms is 

analyzed. Recently, adaptive filtering algorithms have a 

nice tradeoff between the complexity and the convergence 

speed. Three performance criteria are used in the study of 

these algorithms: the minimum mean square error, the 

algorithm execution time and the required filter order. 

 

Keywords: Least mean square (LMS), Normalised Least mean 

square (NLMS), Time Varying Least mean square (TVLMS), 

Recursive Least square (RLS). 

 

I. INTRODUCTION 

There are many digital signal processing applications in 

which second order statistics cannot be specified. Such 

application includes channel equalization echo cancellation 

and noise cancellation. In these applications, filters with 

adjustable coefficients called Adaptive filters are 

employed. An adaptive filter is a filter that self adjusts its 

transfer function according to an optimizing algorithm. It 

adapts the performance based on the input signal. Such 

filters incorporate algorithms that allow the filter 

coefficients to adapt to the signal statics. There are 

different approaches used in adaptive filtering, which are 

as follows: 

 

 
 

 

 

 

 

 

 

 

 

 

Adaptive techniques use algorithms, which enable the 

adaptive filter to adjust its parameters to produce an output 

that matches the output of an unknown system. This 

algorithm employs an individual convergence factor that is 

updated for each adaptive filter coefficient at each 

iteration. 

 

II. LMS ALGORITHM 

 

Least mean squares (LMS) algorithms are class of 

adaptive filter used to mimic a desired filter by finding the 

filter coefficients that relate to producing the least mean 

squares of the error signal (difference between the desired 

and the actual signal). It is a stochastic gradient descent 

method in that the filter is only adapted based on the error 

at the current time. 

 

The basic idea behind LMS filter is to approach the 

optimum filter weights (R-1 P), by updating the filter 

weights in a manner to converge to the optimum filter 

weight. The algorithm starts by assuming a small weights 

(zero in most cases), and at each step, by finding the 

gradient of the mean square error, the weights are updated. 

That is, if the MSE-gradient is positive, it implies, the error 

would keep increasing positively, if the same weight is 

used for further iterations, which means we need to reduce 

the weights. In the same way, if the gradient is negative, 

we need to increase the weights. So, the basic weight 

update equation is: 

wn+1 = wn - µ∆ε[n] 

Where, ε represents the mean-square error. The negative 

sign indicates that, we need to change the weights in a 

direction opposite to that of the gradient slope. 

LMS algorithm summary: 

The LMS algorithm [1] for a pth
 order algorithm can be 

summarized as 

Parameters: P = filter order 

  µ = step size 

 

Initialization: ĥ (0) = 0 

Adaptive filtering 

Stochastic Gradient Approach 

(Least Mean Square 

Algorithms 

Least Square Estimation 

(Recursive Least Square 

Algorithms) 
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Fig 1: Hierarchy of Adaptive Filter  

http://en.wikipedia.org/wiki/Adaptive_filter
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
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Computation: For n = 0, 1, 2... 

  X(n) = [x(n), x(n - 1), …, x(n – p + 1)]
T
 

e(n) = d(n) – ĥ
H
(n) X(n) 

  ĥ (n+1) = ĥ(n) + µ e
*
(n) X(n) 

Convergence and stability in the mean of LMS: 

As the LMS algorithm does not use the exact values of the 

expectations, the weights would never reach the optimal 

weights in the absolute sense, but a convergence is 

possible in mean. That is even-though, the weights may 

change by small amounts, it changes about the optimal 

weights. However, if the variance, with which the weights 

change, is large, convergence in mean would be 

misleading. This problem may occur, if the value of step-

size µ is not chosen properly. 

Thus, an upper bound on µ is needed which is given as 

0 < µ <  
2

λmax
  

Where λmax is an autocorrelation matrix, its eigen vales are 

non negative. If this condition is not fulfilled, the 

algorithm becomes unstable. The convergence of the 

algorithm [4] is inversely proportional to the eigen value 

spread of the correlation matrix R. When the eigen values 

of R are widespread, convergence may be slow. The eigen 

value spread of the correlation matrix is estimated by 

computing the ratio of the largest eigen value to the 

smallest eigen value of the matrix. If µ is chosen to be 

very small then the algorithm converges very slowly. A 

large value of µ may lead to a faster convergence but may 

be less stable around the minimum value. 

Maximum convergence speed [4] is achieved when 

µ = 
2

λ 𝑚𝑎𝑥 +λ𝑚𝑖𝑛
 

Where λmin is the smallest eigen value of R. Given that µ 

is less than or equal to this optimum, the convergence 

speed is determined by λmin, with a larger value yielding 

faster convergence. This means that faster convergence can 

be achieved when λmax is close to λmin, that is, the 

maximum achievable convergence speed depends on the 

eigen value spread of R. 

III. NORMALISED LEAST MEAN SQUARE (NLMS) 

ALGORITHM 

The main drawback of the "pure" LMS algorithm is that it 

is sensitive to the scaling of its input. This makes it very 

hard to choose a learning rate µ that guarantees stability of 

the algorithm. The Normalised least mean squares (NLMS) 

filter [6], [7] is a variant of the LMS algorithm [1] that 

solves this problem by normalising with the power of the 

input.  

NLMS algorithm summary: 

Parameters: P = filter order 

  µ = step size 

 

Initialization: ĥ (0) = 0 

 

Computation: For n = 0, 1, 2... 

  X(n) = [x(n), x(n - 1), …, x(n – p + 1)]
T
 

e(n) = d(n) – ĥ
H
(n) X(n) 

h ̂ (n+1) =  h ̂ (n) + 
μ e∗(𝑛) X(𝑛) 

XH (𝑛) X(𝑛) 
 

Optimal learning rate: 

It can be shown that if there is no interference [v(n) = 0], 
then the optimal learning rate for the NLMS algorithm [5]-

[9] is 
 

μopt = 1 
 

and is independent of the input X(n) and the real 

(unknown) impulse response h(n). In the general case with 

interference v(n) does not equal to 0, the optimal learning 

rate is 

 

μopt  =  
𝐸 [│𝑦 𝑛 −𝑦  𝑛 │2]

𝐸 [│𝑒(𝑛)│2]
 

The results above assume that the signals v(n) and X(n) are 

uncorrelated to each other. 

Time varying Least Mean Square (TVLMS) Algorithm: 

Recently, a new version of the LMS algorithm with time 

varying convergence parameter has been defined. The 

TVLMS algorithm has shown better performance than the 

conventional LMS algorithm in terms of faster 

convergence and less mean square error. The TVLMS 

algorithm is based on utilizing a time varying convergence 

parameter with general power for LMS algorithm.  

The basic idea of TVLMS algorithm is to utilize the fact 

that the LMS algorithm need a large convergence 

parameter value to speed up the convergence of the filter 

coefficient to their optimal values, the convergence 

parameter should be small for better accuracy. In other 

words, we set the convergence parameter to a large value 

in the initial state in order to speed up the algorithm 

convergence. As time passes, the parameter will be 

adjusted to a small value so that the adaptive filter will 

have a smaller mean squared error. 

 

IV.  RECURSIVE LEAST SQUARE (RLS) ALGORITHM 

The Recursive least squares (RLS) adaptive filter is 

an algorithm which recursively finds the filter coefficients 

that minimize a weighted linear least squares cost 

function relating to the input signals. The RLS algorithms 

are known for their excellent performance when working 

in time varying environments but at the cost of an 

increased computational complexity and some stability 

problems. In this algorithm the filter tap weight vector is 

updated using Eq. 

http://en.wikipedia.org/wiki/Eigenvalue_spread
http://en.wikipedia.org/wiki/Adaptive_filter
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Cost_function
http://en.wikipedia.org/wiki/Cost_function
http://en.wikipedia.org/wiki/Cost_function
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 w(n) = w
T
(n-1) + k(n) en-1(n) ..….. (1) 

 k(n)  = u(n) / (λ+X
T
 (n) u(n)) …….(2) 

 u(n)  = wλ
-1

(n-1) X(n)  .........(3) 

Eq. (2) and (3) are intermediate gain vector used to 

compute tap weights. 

Where λ is a small positive constant very close to, but 

smaller than 1. The filter output is calculated using the 

filter tap weights of above iteration and the current input 

vector as in Eq.  (4). 

 yn-1(n) = w
T
(n-1) X(n)  …….(4) 

 en-1(n) = d(n) – yn-1(n)  …….(5) 

  In the RLS Algorithm [1] the estimate of previous 

samples of output signal, error signal and filter weight is 

required that leads to higher memory requirements. 

Table I 

Performance Comparison of Adaptive Algorithms 
S. 

No. 
Algorithms MSE Complexity Stability 

1. LMS 1.5*10
-2 

2N+1 Less 

Stable 

2. NLMS 9.0*10
-3 

3N+1 Stable 

3. RLS 6.2*10
-3 

4N
2 

High 

Stable 

From the Table I show that, the performance of RLS 

adaptive algorithm is high as compared to other algorithm 

due to the less mean-square error (MSE) [2]. 

Fast Transversal RLS Algorithm:  

FTRLS algorithm involves the combined use of four 

transversal filters for forward and backward predictions, 

gain vector computation and joint process estimation. The 

main advantage of FTRLS algorithm is reduced 

computational complexity as compared to the other 

available solutions. 

Background on LMS, NLMS and RLS Algorithm: 

Figure show the adaptive filter setup, where X(n), d(n) and 

e(n) are the input, the desired and the output error signals, 

respectively. The vector ĥ(n) is the (px1) column vector of 

filter coefficient at time n, in such a way that the output of 

signal, y(n), is good estimate of the desired signal, d(n). 

 

Fig.2: Adaptive filter setup 

Filter vector update equation for the LMS algorithm is 

given by equation 

ĥ(n+1) = ĥ(n) + µ e
*
(n) X(n) 

Where, X(n) = [x(n), x(n - 1), …, x(n – p + 1)]
T 

and µ is the step-size that determines the convergence 

speed and steady-state mean-square error (MSE). Also, the 

output error signal, e(n), is given by  

e(n) = d(n) – ĥ
H
(n) X(n) 

To increase the convergence speed of the LMS algorithm, 

the NLMS algorithms [1] was proposed which can be 

stated as 

h ̂ (n+1) =  h ̂ (n) + 
μ e∗(𝑛) X(𝑛) 

XH (𝑛) X(𝑛) 
 

The filter vector update equation in RLS algorithm is 

ĥ(n+1) = ĥ(n) + C
-1

(n) e
*
(n) X(n), 

where C(n) is the estimation of the autocorrelation matrix 

[2]. This matrix is given by 

C(n) =  λ𝑛−𝑖X 𝑖 XT𝑛

𝑖=0
(i) 

The λ parameter is the forgetting factor and 0 << λ < 1. 

V. CONCLUSION 

Here the comparison between different algorithms is 

described by SNR improvement table [3]. The SNR 

improvement of LMS, NLMS and RLS adaptive algorithm 

shown in the Table II at 1.5 kHz sampling rate and 

different noise variance, according to the table the RLS 

adaptive algorithm has improved SNR in dB. It concludes 

that the best adaptive algorithm is Recursive Least Square 

according to the SNR improvement table and graph of 

MSE.  

TABLE II 

SNR IMPROVEMENT IN DB 

Noise 

Variance 

Sampling 

Rate 

(kHz) 

SNR 

Improvem

ent (dB) 

LMS 

SNR 

Improvem

ent (dB) 

NLMS 

SNR 

Improvem

ent (dB) 

RLS 

0.02 1.5 8.85 9.85 9.91 

0.05 1.5 7.55 8.62 8.89 

0.10 1.5 5.12 6.38 7.02 
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Fig 3: Convergence Comparison for different values of wait 

(W=2.5, W=3.5) 

 

To compare the performance, the mean square error (MSE) 

of LMS, NLMS and RLS algorithms for different values of 

waits W are shown in above fig 2, fig 3, and fig 4, the 

conclusion is that RLS algorithm exhibits high initial 

convergence speed and less steady state error compare to 

both LMS and NLMS algorithm. 

 

It is clear from the graphs, LMS algorithm takes more 

iteration 500, 1000, and more than 1500 iteration required 

for achieve the steady state error (ess) but in NLMS and 

RLS algorithm to achieve the steady state error is less 

number of iteration along with mean square error is also 

less as compared to LMS algorithm for different weight 

vector [8]. 

 

Here we can say that in the comparison of the LMS and 

NLMS algorithm, the RLS approach offers faster 

convergence and smaller error with respect to the unknown 

system. 

 

 

 
 

Fig 4: Comparison between learning curve of different 

Algorithms. 
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