diff --git a/src/ansi_c_implementation/NLMSvariants.c b/src/ansi_c_implementation/NLMSvariants.c index e8ee57f..812416b 100644 --- a/src/ansi_c_implementation/NLMSvariants.c +++ b/src/ansi_c_implementation/NLMSvariants.c @@ -19,23 +19,22 @@ Created by Stefan Friese on 26.04.2018 typedef SSIZE_T ssize_t; #endif -double *xSamples; // Input values -mldata_t *mlData = NULL; // Machine learning +double *xSamples; // Input color values from PPM +mldata_t *mlData = NULL; // Machine learning realted data point_t *points = NULL; // Graphing -/* *graph building* */ +/* *Graph building* */ static imagePixel_t * rdPPM(char *fileName); // Read PPM file format void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file char *colorChannel, mldata_t *mlData); void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples -/* *file handling* */ -char * mkFileName ( char* buffer, +/* *File handling* */ +char * mkFileName ( char* buffer, // Date+suffix as filename size_t max_len, int suffixId ); -char *fileSuffix ( int id ); +char *fileSuffix ( int id ); // Filename ending of logs char *fileHeader ( int id ); // Header inside the logfiles -//void myLogger ( FILE* fp, point_t points[] ); void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template void mkSvgGraph ( point_t points[] ); // Parses graph template and calls bufferLogger() void weightsLogger ( double *weights, int suffix ); // Writes updated weights to a file @@ -142,8 +141,7 @@ int main( int argc, char **argv ) { char fileName[50]; // Logfiles and their names mkFileName(fileName, sizeof(fileName), TEST_VALUES); FILE* fp5 = fopen(fileName, "w"); - //xLength = - ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values, debugging + ppmColorChannel(fp5, image, colorChannel, mlData); FILE* fp6 = fopen(fileName, "r"); colorSamples(fp6, mlData); @@ -161,18 +159,15 @@ int main( int argc, char **argv ) { printf("[%d] %lf\n", k, mlData->weights[k]); } - mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights FILE *fp0 = fopen(fileName, "w"); for (k = 0; k < mlData->windowSize; k++) { - fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); + fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); } - fclose(fp0); - /* *math magic* */ - localMean ( mlData, points ); - directPredecessor ( mlData, points); + localMean ( mlData, points ); // math magic functions + directPredecessor ( mlData, points ); differentialPredecessor( mlData, points ); if ( include == 1 ) { @@ -201,8 +196,8 @@ void localMean ( mldata_t *mlData, point_t points[] ) { localWeights = mlData->weights; char fileName[50]; - double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n) - memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero + double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n) = x - xPred + memset(xError, 0.0, mlData->samplesCount); // Initialize xError with zero unsigned i, xCount = 0; // Runtime vars mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename @@ -218,7 +213,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { double xPredicted = 0.0; double xActual = 0.0; - for ( xCount = 1; xCount < mlData->samplesCount-1; xCount++ ) { // First value will not get predicted + for ( xCount = 1; xCount < mlData->samplesCount-1; xCount++ ) { // First value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; xPredicted = 0.0; @@ -255,7 +250,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; -// printf("Xerrorl:%lf", xErrorLength); + double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; @@ -268,10 +263,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { // free(localWeights); free(xErrorPtr); free(xError); - fclose(fp4); - - //weightsLogger( local_weights, USED_WEIGHTS ); } /* @@ -295,14 +287,14 @@ void directPredecessor( mldata_t *mlData, point_t points[]) { double xActual = 0.0; double xPredicted = 0.0; - mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling + mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling FILE *fp3 = fopen(fileName, "w"); fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED); FILE *fp9 = fopen(fileName, "w"); - for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // first value will not get predicted + for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // first value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; @@ -332,15 +324,11 @@ void directPredecessor( mldata_t *mlData, point_t points[]) { points[xCount].yVal[2] = xPredicted; points[xCount].xVal[5] = xCount; points[xCount].yVal[5] = xError[xCount]; - // weightsLogger( fp, localWeights, USED_WEIGHTS ); - - } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // Stored length in [0] , won't be used anyway. Bit dirty - //printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; @@ -413,7 +401,7 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { fprintf( fp9, "%lf\n", localWeights[i] ); } - fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile + fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[3] = xCount; points[xCount].yVal[3] = xPredicted; @@ -425,7 +413,6 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; -// printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; @@ -441,9 +428,6 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { // free(localWeights); free(xErrorPtr); free(xError); - - -// weightsLogger( localWeights, USED_WEIGHTS ); } /* @@ -514,11 +498,11 @@ char * fileHeader ( int id ) { weightsLogger -Logs used weights to logfile +Logs used weights to logfile - not used right now ====================================================================================================== */ -void weightsLogger (double *weights, int val ) { +void weightsLogger (double *weights, int val ) { char fileName[512]; unsigned i; mkFileName(fileName, sizeof(fileName), val); @@ -547,8 +531,7 @@ formats output of mkSvgGraph -- Please open graphResults.html to see the output- */ void bufferLogger(char *buffer, point_t points[]) { unsigned i; - char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen -// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1); + char _buffer[512] = ""; for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); strcat(buffer, _buffer); @@ -559,7 +542,7 @@ void bufferLogger(char *buffer, point_t points[]) { strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPredicted from directPredecessor + for (i = 1; i <= mlData->samplesCount - 2; i++) { //xPredicted from directPredecessor sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]); strcat(buffer, _buffer); } @@ -609,11 +592,10 @@ double *popNAN(double *xError) { for ( i = 0; i < mlData->samplesCount - 1; i++ ) { counter ++; - more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); + more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); // Dynamically sized array, as described in realloc() manual if ( !isnan(xError[i]) ) { tmp = more_tmp; - tmp[counter - 1] = xError[i]; - //printf("xERROR:%lf\n", tmp[counter - 1]); + tmp[counter - 1] = xError[i]; tmpLength++; } } @@ -673,8 +655,7 @@ void mkSvgGraph(point_t points[]) { exit(EXIT_FAILURE); } - char buffer[131072] = ""; // Bit dirty -// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) ); + char buffer[131072] = ""; // Really really dirty memset(buffer, '\0', sizeof(buffer)); while (!feof(input)) { // parses file until "firstGraph" has been found @@ -712,7 +693,7 @@ static imagePixel_t *rdPPM(char *fileName) { perror(fileName); exit(EXIT_FAILURE); } - if (buffer[0] != 'P' || buffer[1] != '6') { + if (buffer[0] != 'P' || buffer[1] != '6') { // PPM files start with P6 fprintf(stderr, "No PPM file format\n"); exit(EXIT_FAILURE); } @@ -721,7 +702,7 @@ static imagePixel_t *rdPPM(char *fileName) { fprintf(stderr, "malloc() failed"); } c = getc(fp); - while (c == '#') { + while (c == '#') { // PPM Comments start with # while (getc(fp) != '\n'); c = getc(fp); } @@ -747,7 +728,7 @@ static imagePixel_t *rdPPM(char *fileName) { printf("Changing \"-n\" to %d, image max data size\n", ( image->x * image->y ) ); tmp = (double *) realloc ( xSamples, sizeof(double) * (image->x * image->y) ); xSamples = tmp; - mlData->samplesCount = (image->x * image->y ) / sizeof(double); + mlData->samplesCount = (image->x * image->y ); } if ( fread( image->data, 3 * image->x, image->y, fp) != image->y) { fprintf(stderr, "Loading image failed"); @@ -832,8 +813,7 @@ void colorSamples ( FILE* fp, mldata_t *mlData ) { while (!feof(fp)) { if (fgets(buffer, mlData->samplesCount, fp) != NULL) { - sscanf(buffer, "%lf", &xSamples[i]); - //printf("%lf\n", xSamples[i] ); + sscanf(buffer, "%lf", &xSamples[i]); points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph points[i].xVal[0] = i; ++i; @@ -855,7 +835,7 @@ double windowXMean(int _arraylength, int xCount) { double sum = 0.0; double *ptr; - for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window + for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window and iterate through array sum += *ptr; } return sum / (double)_arraylength; @@ -892,7 +872,7 @@ void usage ( char **argv ) { init_mldata_t - Contains meachine learning data + Init meachine learning data ====================================================================================================== */ diff --git a/src/cpp_implementation/NLMSvariants.cpp b/src/cpp_implementation/NLMSvariants.cpp index e8ee57f..812416b 100644 --- a/src/cpp_implementation/NLMSvariants.cpp +++ b/src/cpp_implementation/NLMSvariants.cpp @@ -19,23 +19,22 @@ Created by Stefan Friese on 26.04.2018 typedef SSIZE_T ssize_t; #endif -double *xSamples; // Input values -mldata_t *mlData = NULL; // Machine learning +double *xSamples; // Input color values from PPM +mldata_t *mlData = NULL; // Machine learning realted data point_t *points = NULL; // Graphing -/* *graph building* */ +/* *Graph building* */ static imagePixel_t * rdPPM(char *fileName); // Read PPM file format void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file char *colorChannel, mldata_t *mlData); void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples -/* *file handling* */ -char * mkFileName ( char* buffer, +/* *File handling* */ +char * mkFileName ( char* buffer, // Date+suffix as filename size_t max_len, int suffixId ); -char *fileSuffix ( int id ); +char *fileSuffix ( int id ); // Filename ending of logs char *fileHeader ( int id ); // Header inside the logfiles -//void myLogger ( FILE* fp, point_t points[] ); void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template void mkSvgGraph ( point_t points[] ); // Parses graph template and calls bufferLogger() void weightsLogger ( double *weights, int suffix ); // Writes updated weights to a file @@ -142,8 +141,7 @@ int main( int argc, char **argv ) { char fileName[50]; // Logfiles and their names mkFileName(fileName, sizeof(fileName), TEST_VALUES); FILE* fp5 = fopen(fileName, "w"); - //xLength = - ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values, debugging + ppmColorChannel(fp5, image, colorChannel, mlData); FILE* fp6 = fopen(fileName, "r"); colorSamples(fp6, mlData); @@ -161,18 +159,15 @@ int main( int argc, char **argv ) { printf("[%d] %lf\n", k, mlData->weights[k]); } - mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights FILE *fp0 = fopen(fileName, "w"); for (k = 0; k < mlData->windowSize; k++) { - fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); + fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); } - fclose(fp0); - /* *math magic* */ - localMean ( mlData, points ); - directPredecessor ( mlData, points); + localMean ( mlData, points ); // math magic functions + directPredecessor ( mlData, points ); differentialPredecessor( mlData, points ); if ( include == 1 ) { @@ -201,8 +196,8 @@ void localMean ( mldata_t *mlData, point_t points[] ) { localWeights = mlData->weights; char fileName[50]; - double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n) - memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero + double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n) = x - xPred + memset(xError, 0.0, mlData->samplesCount); // Initialize xError with zero unsigned i, xCount = 0; // Runtime vars mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename @@ -218,7 +213,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { double xPredicted = 0.0; double xActual = 0.0; - for ( xCount = 1; xCount < mlData->samplesCount-1; xCount++ ) { // First value will not get predicted + for ( xCount = 1; xCount < mlData->samplesCount-1; xCount++ ) { // First value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; xPredicted = 0.0; @@ -255,7 +250,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; -// printf("Xerrorl:%lf", xErrorLength); + double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; @@ -268,10 +263,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) { // free(localWeights); free(xErrorPtr); free(xError); - fclose(fp4); - - //weightsLogger( local_weights, USED_WEIGHTS ); } /* @@ -295,14 +287,14 @@ void directPredecessor( mldata_t *mlData, point_t points[]) { double xActual = 0.0; double xPredicted = 0.0; - mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling + mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling FILE *fp3 = fopen(fileName, "w"); fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED); FILE *fp9 = fopen(fileName, "w"); - for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // first value will not get predicted + for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // first value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; @@ -332,15 +324,11 @@ void directPredecessor( mldata_t *mlData, point_t points[]) { points[xCount].yVal[2] = xPredicted; points[xCount].xVal[5] = xCount; points[xCount].yVal[5] = xError[xCount]; - // weightsLogger( fp, localWeights, USED_WEIGHTS ); - - } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // Stored length in [0] , won't be used anyway. Bit dirty - //printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; @@ -413,7 +401,7 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { fprintf( fp9, "%lf\n", localWeights[i] ); } - fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile + fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[3] = xCount; points[xCount].yVal[3] = xPredicted; @@ -425,7 +413,6 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; -// printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; @@ -441,9 +428,6 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { // free(localWeights); free(xErrorPtr); free(xError); - - -// weightsLogger( localWeights, USED_WEIGHTS ); } /* @@ -514,11 +498,11 @@ char * fileHeader ( int id ) { weightsLogger -Logs used weights to logfile +Logs used weights to logfile - not used right now ====================================================================================================== */ -void weightsLogger (double *weights, int val ) { +void weightsLogger (double *weights, int val ) { char fileName[512]; unsigned i; mkFileName(fileName, sizeof(fileName), val); @@ -547,8 +531,7 @@ formats output of mkSvgGraph -- Please open graphResults.html to see the output- */ void bufferLogger(char *buffer, point_t points[]) { unsigned i; - char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen -// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1); + char _buffer[512] = ""; for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); strcat(buffer, _buffer); @@ -559,7 +542,7 @@ void bufferLogger(char *buffer, point_t points[]) { strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPredicted from directPredecessor + for (i = 1; i <= mlData->samplesCount - 2; i++) { //xPredicted from directPredecessor sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]); strcat(buffer, _buffer); } @@ -609,11 +592,10 @@ double *popNAN(double *xError) { for ( i = 0; i < mlData->samplesCount - 1; i++ ) { counter ++; - more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); + more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); // Dynamically sized array, as described in realloc() manual if ( !isnan(xError[i]) ) { tmp = more_tmp; - tmp[counter - 1] = xError[i]; - //printf("xERROR:%lf\n", tmp[counter - 1]); + tmp[counter - 1] = xError[i]; tmpLength++; } } @@ -673,8 +655,7 @@ void mkSvgGraph(point_t points[]) { exit(EXIT_FAILURE); } - char buffer[131072] = ""; // Bit dirty -// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) ); + char buffer[131072] = ""; // Really really dirty memset(buffer, '\0', sizeof(buffer)); while (!feof(input)) { // parses file until "firstGraph" has been found @@ -712,7 +693,7 @@ static imagePixel_t *rdPPM(char *fileName) { perror(fileName); exit(EXIT_FAILURE); } - if (buffer[0] != 'P' || buffer[1] != '6') { + if (buffer[0] != 'P' || buffer[1] != '6') { // PPM files start with P6 fprintf(stderr, "No PPM file format\n"); exit(EXIT_FAILURE); } @@ -721,7 +702,7 @@ static imagePixel_t *rdPPM(char *fileName) { fprintf(stderr, "malloc() failed"); } c = getc(fp); - while (c == '#') { + while (c == '#') { // PPM Comments start with # while (getc(fp) != '\n'); c = getc(fp); } @@ -747,7 +728,7 @@ static imagePixel_t *rdPPM(char *fileName) { printf("Changing \"-n\" to %d, image max data size\n", ( image->x * image->y ) ); tmp = (double *) realloc ( xSamples, sizeof(double) * (image->x * image->y) ); xSamples = tmp; - mlData->samplesCount = (image->x * image->y ) / sizeof(double); + mlData->samplesCount = (image->x * image->y ); } if ( fread( image->data, 3 * image->x, image->y, fp) != image->y) { fprintf(stderr, "Loading image failed"); @@ -832,8 +813,7 @@ void colorSamples ( FILE* fp, mldata_t *mlData ) { while (!feof(fp)) { if (fgets(buffer, mlData->samplesCount, fp) != NULL) { - sscanf(buffer, "%lf", &xSamples[i]); - //printf("%lf\n", xSamples[i] ); + sscanf(buffer, "%lf", &xSamples[i]); points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph points[i].xVal[0] = i; ++i; @@ -855,7 +835,7 @@ double windowXMean(int _arraylength, int xCount) { double sum = 0.0; double *ptr; - for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window + for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window and iterate through array sum += *ptr; } return sum / (double)_arraylength; @@ -892,7 +872,7 @@ void usage ( char **argv ) { init_mldata_t - Contains meachine learning data + Init meachine learning data ====================================================================================================== */