diff --git a/bin/NLMSvariants.c b/bin/NLMSvariants.c index c232991..36d3a10 100644 --- a/bin/NLMSvariants.c +++ b/bin/NLMSvariants.c @@ -31,7 +31,6 @@ enum fileSuffix_t{ // used in conjunction with mkFileName() DIFFERENTIAL_PREDECESSOR }; -//double x[] = { 0.0 }; double xSamples[NUMBER_OF_SAMPLES] = { 0.0 }; /* *svg graph building* */ @@ -158,12 +157,9 @@ void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) { double xActual = 0.0; for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted - //double xPartArray[1000]; //includes all values at the size of runtime var - //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; + int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount; - //printf("xCount:%d, length:%d\n", xCount, _arrayLength); xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; - // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount)); xPredicted = 0.0; xActual = xSamples[xCount + 1]; // weightedSum += _x[ xCount-1 ] * w[xCount][0]; @@ -181,26 +177,19 @@ void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) { xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { //get xSquared xSquared += pow(xSamples[xCount - i] - xMean, 2); - // printf("xSquared:%f\n", xSquared); } if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions xSquared = 1.0; } - //printf("%f\n", xSquared); for (i = 1; i < _arrayLength; i++) { //update weights local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared); - // printf("NEU::%lf\n", local_weights[i][xCount]); } fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); } -// int xErrorLength = sizeof(xError) / sizeof(xError[0]); -// printf("vor:%d", xErrorLength); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] - //printf("%lf", xErrorPtr[499]); double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; printf("Xerrorl:%lf", xErrorLength); - double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0;