From bff48f70c88e590d725f37525f049b6b835944e5 Mon Sep 17 00:00:00 2001 From: gurkenhabicht <34342412+gurkenhabicht@users.noreply.github.com> Date: Wed, 16 May 2018 11:09:28 +0200 Subject: [PATCH] Delete NLMSsingleweights.c --- bin/NLMSsingleweights.c | 774 ---------------------------------------- 1 file changed, 774 deletions(-) delete mode 100644 bin/NLMSsingleweights.c diff --git a/bin/NLMSsingleweights.c b/bin/NLMSsingleweights.c deleted file mode 100644 index 5981aa9..0000000 --- a/bin/NLMSsingleweights.c +++ /dev/null @@ -1,774 +0,0 @@ -// -// -// NLMSvariants.c -// -// Created by FBRDNLMS on 26.04.18. -// -// - -#include -#include -#include -#include -#include -#include // DBL_MAX - -#define NUMBER_OF_SAMPLES 1000 -#define WINDOWSIZE 5 -#define tracking 40 //Count of weights -#define learnrate 0.8 -#define PURE_WEIGHTS 0 -#define USED_WEIGHTS 1 -#define RESULTS 3 -#define DIRECT_PREDECESSOR 2 -#define LOCAL_MEAN 4 -#define TEST_VALUES 5 -#define DIFFERENTIAL_PREDECESSOR 6 -#define RGB_COLOR 255 -#if defined(_MSC_VER) -#include -typedef SSIZE_T ssize_t; -#endif - -//double x[] = { 0.0 }; -double xSamples[NUMBER_OF_SAMPLES] = { 0.0 }; - -/* *svg graph building* */ -typedef struct { - double xVal[7]; - double yVal[7]; -}point_t; - -point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor - - /* *ppm read, copy, write* */ -typedef struct { - unsigned char red, green, blue; -}colorChannel_t; - -typedef struct { - int x, y; - colorChannel_t *data; -}imagePixel_t; - -static imagePixel_t * rdPPM(char *fileName); // read PPM file format -void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file -int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file -void colorSamples(FILE* fp); // stores color channel values in xSamples[] - -/* *file handling* */ -char * mkFileName(char* buffer, size_t max_len, int suffixId); -char *fileSuffix(int id); -void myLogger(FILE* fp, point_t points[]); -void mkSvgGraph(point_t points[]); -//void weightsLogger(double *weights, int var); -/* *rand seed* */ -double r2(void); -double rndm(void); - -/* *math* */ -double sum_array(double x[], int length); -void directPredecessor(double *weights); -void localMean(double *weights); -//void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]); -void differentialPredecessor(double *weights); -double *popNAN(double *xError, int xErrorLength); //return new array without NAN values -double windowXMean(int _arraylength, int xCount); - - -int main(int argc, char **argv) { - double weights[WINDOWSIZE] = { 0.0 }; -// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; - char fileName[50]; - int i, xLength; - imagePixel_t *image; - - image = rdPPM("beaches.ppm"); - mkFileName(fileName, sizeof(fileName), TEST_VALUES); - FILE* fp5 = fopen(fileName, "w"); - xLength = ppmColorChannel(fp5, image); - printf("%d\n", xLength); - - FILE* fp6 = fopen(fileName, "r"); - colorSamples(fp6); - - srand((unsigned int)time(NULL)); - - for (i = 0; i < WINDOWSIZE; i++) { - //_x[i] += ((255.0 / M) * i); // Init test values - // for (int k = 0; k < WINDOWSIZE; k++) { - weights[i] = rndm(); // Init weights - // } - } - - mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); - // save plain test_array before math magic happens - FILE *fp0 = fopen(fileName, "w"); - for (i = 0; i < WINDOWSIZE; i++) { -// for (k = 0; k < WINDOWSIZE; k++) { - fprintf(fp0, "[%d]%lf\n", i, weights[i]); - } -// } - fclose(fp0); - - - // math magic -/* for (i = 0; i < NUMBER_OF_SAMPLES; i++){ - for (k = 0; k < WINDOWSIZE; k++){ - local_weights[k][i] = weights[k][i]; - printf("ALT::%f\n", local_weights[k][i]); - } - }*/ - localMean(weights); -// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES); - directPredecessor(weights); -// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES); - differentialPredecessor(weights); - mkSvgGraph(points); - // save test_array after math magic happened - // memset( fileName, '\0', sizeof(fileName) ); -/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS); - FILE *fp1 = fopen(fileName, "w"); - for (i = 0; i < tracking; i++) { - for (int k = 0; k < WINDOWSIZE; k++) { - fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]); - } - - } - fclose(fp1); -*/ - // getchar(); - printf("\nDONE!\n"); -} - - -/* -====================================================================================================== - -localMean - -Variant (1/3), substract local mean. - -====================================================================================================== -*/ - -void localMean(double *weights) { - double local_weights[WINDOWSIZE]; - memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE); - char fileName[50]; - double xError[2048]; // includes e(n) - memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero - int xCount = 0, i; // runtime var; - mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); - FILE* fp4 = fopen(fileName, "w"); - fprintf(fp4, "\n=====================================LocalMean=====================================\n"); - - double xMean = xSamples[0]; - double xSquared = 0.0; - double xPredicted = 0.0; - double xActual = 0.0; - - for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted - //double xPartArray[1000]; //includes all values at the size of runtime var - //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; - int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount; - //printf("xCount:%d, length:%d\n", xCount, _arrayLength); - xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; - // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount)); - xPredicted = 0.0; - xActual = xSamples[xCount + 1]; - // weightedSum += _x[ xCount-1 ] * w[xCount][0]; - - for (i = 1; i < _arrayLength; i++) { //get predicted value - xPredicted += (local_weights[i] * (xSamples[xCount - i] - xMean)); - - } - xPredicted += xMean; - xError[xCount] = xActual - xPredicted; - printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual); - points[xCount].xVal[1] = xCount; - points[xCount].yVal[1] = xPredicted; - points[xCount].xVal[4] = xCount; - points[xCount].yVal[4] = xError[xCount]; - - xSquared = 0.0; - for (i = 1; i < _arrayLength; i++) { //get xSquared - xSquared += pow(xSamples[xCount - i] - xMean, 2); - // printf("xSquared:%f\n", xSquared); - } - if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions - xSquared = 1.0; - } - //printf("%f\n", xSquared); - - for (i = 1; i < _arrayLength; i++) { //update weights - local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared); - // printf("NEU::%lf\n", local_weights[i]); - } - fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); - - } - int xErrorLength = sizeof(xError) / sizeof(xError[0]); - printf("vor:%d", xErrorLength); - popNAN(xError, xErrorLength); - printf("nach:%d", xErrorLength); - xErrorLength = sizeof(xError) / sizeof(xError[0]); - double mean = sum_array(xError, xErrorLength) / xErrorLength; - double deviation = 0.0; - - // Mean square - for (i = 0; i < xErrorLength - 1; i++) { - deviation += pow(xError[i] - mean, 2); - } - deviation /= xErrorLength; - - // write in file - mkFileName(fileName, sizeof(fileName), RESULTS); - FILE *fp2 = fopen(fileName, "w"); - fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean); - fclose(fp2); - fclose(fp4); - -// weightsLogger( local_weights, USED_WEIGHTS ); - //mkSvgGraph(points); - -} - -/* -====================================================================================================== - -directPredecessor - -Variant (2/3), -substract direct predecessor - -====================================================================================================== -*/ - -void directPredecessor(double *weights) { - double local_weights[WINDOWSIZE]; - memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE ); - char fileName[512]; - double xError[2048]; - int xCount = 0, i; - double xActual = 0.0; - double xPredicted = 0.0; - // File handling - mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); - FILE *fp3 = fopen(fileName, "w"); - fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n"); - - - for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted - //double xPartArray[1000]; //includes all values at the size of runtime var - //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; - int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; - //printf("xCount:%d, length:%d\n", xCount, _arrayLength); - // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount)); - xPredicted = 0.0; - xActual = xSamples[xCount + 1]; - // weightedSum += _x[ xCount-1 ] * w[xCount][0]; - - for (i = 1; i < _arrayLength; i++) { - xPredicted += (local_weights[i] * (xSamples[xCount - 1] - xSamples[xCount - i - 1])); - } - xPredicted += xSamples[xCount - 1]; - xError[xCount] = xActual - xPredicted; - - fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); - points[xCount].xVal[2] = xCount; - points[xCount].yVal[2] = xPredicted; - points[xCount].xVal[5] = xCount; - points[xCount].yVal[5] = xError[xCount]; - - double xSquared = 0.0; - - for (i = 1; i < _arrayLength; i++) { - xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor - } - for (i = 1; i < _arrayLength; i++) { - local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared); - } - } - - int xErrorLength = sizeof(xError) / sizeof(xError[0]); - printf("vor:%d", xErrorLength); - popNAN(xError, xErrorLength); - printf("nach:%d", xErrorLength); - xErrorLength = sizeof(xError) / sizeof(xError[0]); - double mean = sum_array(xError, xErrorLength) / xErrorLength; - double deviation = 0.0; - - for (i = 0; i < xErrorLength - 1; i++) { - deviation += pow(xError[i] - mean, 2); - } - deviation /= xErrorLength; - -// mkSvgGraph(points); - fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); - - fclose(fp3); -} - - -/* -====================================================================================================== - -differentialPredecessor - -variant (3/3), -differenital predecessor. - -====================================================================================================== -*/ -void differentialPredecessor(double *weights) { - double local_weights[WINDOWSIZE]; - memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE ); - char fileName[512]; - double xError[2048]; - int xCount = 0, i; - double xPredicted = 0.0; - double xActual = 0.0; - - // File handling - mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); - FILE *fp6 = fopen(fileName, "w"); - fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n"); - - for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted - xActual = xSamples[xCount +1]; - xPredicted = 0.0; - int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; - - for (i = 1; i < _arrayLength; i++) { - xPredicted += (local_weights[i] * (xSamples[xCount - i] - xSamples[xCount - i - 1])); - } - xPredicted += xSamples[xCount - 1]; - xError[xCount] = xActual - xPredicted; - - fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xSamples[xCount], xError[xCount]); - points[xCount].xVal[3] = xCount; - points[xCount].yVal[3] = xPredicted; - points[xCount].xVal[6] = xCount; - points[xCount].yVal[6] = xError[xCount]; - double xSquared = 0.0; - - for (i = 1; i < _arrayLength; i++) { - xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor - } - if (xSquared == 0.0 ){ - xSquared = 1.0; - } - - for (i = 1; i < _arrayLength; i++) { - local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared); - printf("NEU::%lf\n", local_weights[i]); - } - - } - - int xErrorLength = sizeof(xError) / sizeof(xError[0]); - printf("vor:%d", xErrorLength); - popNAN(xError, xErrorLength); - printf("nach:%d", xErrorLength); - xErrorLength = sizeof(xError) / sizeof(xError[0]); - double mean = sum_array(xError, xErrorLength) / xErrorLength; - double deviation = 0.0; - - for (i = 0; i < xErrorLength - 1; i++) { - deviation += pow(xError[i] - mean, 2); - } - deviation /= xErrorLength; - - //mkSvgGraph(points); - fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); - - fclose(fp6); - - -} - - -/* -====================================================================================================== - -mkFileName - -Writes the current date plus the suffix with index suffixId -into the given buffer. If the total length is longer than max_len, -only max_len characters will be written. - -====================================================================================================== - -*/ - -char *mkFileName(char* buffer, size_t max_len, int suffixId) { - const char * format_str = "%Y-%m-%d_%H_%M_%S"; - size_t date_len; - const char * suffix = fileSuffix(suffixId); - time_t now = time(NULL); - - strftime(buffer, max_len, format_str, localtime(&now)); - date_len = strlen(buffer); - strncat(buffer, suffix, max_len - date_len); - return buffer; -} - - -/* -====================================================================================================== - -fileSuffix - -Contains and returns every suffix for all existing filenames - -====================================================================================================== -*/ - -char * fileSuffix(int id) { - char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" }; - return suffix[id]; -} - - -/* -====================================================================================================== - -myLogger - -Logs x,y points to svg graph - -====================================================================================================== -*/ -/* -void weightsLogger (double weights[WINDOWSIZE], int val ) { - char fileName[512]; - int i; - mkFileName(fileName, sizeof(fileName), val); - FILE* fp = fopen(fileName, "wa"); - for (i = 0; i < WINDOWSIZE; i++) { - // for (int k = 0; k < WINDOWSIZE; k++) { - fprintf(fp, "[%d]%lf\n", i, weights[i]); - // } - } - fprintf(fp,"\n\n\n\n=====================NEXT=====================\n"); - fclose(fp); -} -*/ - -void bufferLogger(char *buffer, point_t points[]) { - int i; - char _buffer[512] = ""; - - for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual - sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); - strcat(buffer, _buffer); - } - strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n\n\n\n"); -} - - -/* -====================================================================================================== - -sum_array - -Sum of all elements in x within a defined length - -====================================================================================================== -*/ - -double sum_array(double x[], int xlength) { - int i = 0; - double sum = 0.0; - - if (xlength != 0) { - for (i = 0; i < xlength; i++) { - sum += x[i]; - } - } - return sum; -} - - -/* -====================================================================================================== - -popNanLength - -returns length of new array without NAN values - -====================================================================================================== -*/ - -double *popNAN(double *xError, int xErrorLength) { - int i, counter; - double *tmp = NULL; - double *more_tmp = NULL; - //tmp = realloc( noNAN, xErrorLength * sizeof(double) ); - - for ( i = 0; i < xErrorLength; i++ ) { - counter ++; - more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); - if ( !isnan(xError[i]) ) { - tmp = more_tmp; - tmp[counter - 1] = xError[i]; - - } - } - -/* for (i = 0; i < xErrorLength; i++) { - if (!isnan(xError[i])) { - tmp[i] = xError[i]; - counter++; - } - } -*/ - //realloc(noNAN, counter * sizeof(double)); - //int tmpLength = sizeof(noNAN) / sizeof(noNAN[0]); - //memcpy(xError, tmp, tmpLength); - //return xError; - return tmp; - -} -/* -====================================================================================================== - -r2 - -returns a random double value between 0 and 1 - -====================================================================================================== -*/ - -double r2(void) { - return((rand() % 10000) / 10000.0); -} - - -/* -====================================================================================================== - -rndm - -fills a double variable with random value and returns it - -====================================================================================================== -*/ - -double rndm(void) { - double rndmval = r2(); - return rndmval; -} - - -/* -====================================================================================================== - -mkSvgGraph - -parses template.svg and writes results in said template - -====================================================================================================== -*/ - -void mkSvgGraph(point_t points[]) { - FILE *input = fopen("graphResults_template.html", "r"); - FILE *target = fopen("graphResults.html", "w"); - char line[512]; - char firstGraph[15] = { "x, &image->y) != 2) { - fprintf(stderr, "Invalid image size in %s\n", fileName); - exit(EXIT_FAILURE); - } - if (fscanf(fp, "%d", &rgbColor) != 1) { - fprintf(stderr, "Invalid rgb component in %s\n", fileName); - } - if (rgbColor != RGB_COLOR) { - fprintf(stderr, "Invalid image color range in %s\n", fileName); - exit(EXIT_FAILURE); - } - while (fgetc(fp) != '\n'); - image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t)); - if (!image) { - fprintf(stderr, "malloc() failed"); - exit(EXIT_FAILURE); - } - if (fread(image->data, 3 * image->x, image->y, fp) != image->y) { - fprintf(stderr, "Loading image failed"); - exit(EXIT_FAILURE); - } - fclose(fp); - return image; -} - - -/* -====================================================================================================== - -mkPpmFile - -gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a -carbon copy of the source image. Build for debugging - -====================================================================================================== -*/ - -void mkPpmFile(char *fileName, imagePixel_t *image) { - FILE* fp = fopen(fileName, "wb"); - if (!fp) { - fprintf(stderr, "Opening file failed."); - exit(EXIT_FAILURE); - } - fprintf(fp, "P6\n"); - fprintf(fp, "%d %d\n", image->x, image->y); - fprintf(fp, "%d\n", RGB_COLOR); - fwrite(image->data, 3 * image->x, image->y, fp); - fclose(fp); -} - - -/* -====================================================================================================== - -ppmColorChannel - -gets one of the rgb color channels and writes them to a file - -====================================================================================================== -*/ - -int ppmColorChannel(FILE* fp, imagePixel_t *image) { - // int length = 1000; // (image->x * image->y) / 3; - int i = 0; - - if (image) { - for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { - fprintf(fp, "%d\n", image->data[i].green); - } - } - fclose(fp); - return NUMBER_OF_SAMPLES; -} - - -/* -====================================================================================================== - -colorSamples - -reads colorChannel values from file and stores them in xSamples as well as points datatype for -creating the SVG graph - -====================================================================================================== -*/ -void colorSamples(FILE* fp) { - int i = 0; - char buffer[NUMBER_OF_SAMPLES]; - - while (!feof(fp)) { - if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) { - sscanf(buffer, "%lf", &xSamples[i]); - //printf("%lf\n", xSamples[i] ); - points[i].yVal[0] = xSamples[i]; - points[i].xVal[0] = i; - ++i; - } - } - fclose(fp); -} - -double windowXMean(int _arraylength, int xCount) { - double sum = 0.0; - double *ptr; - // printf("*window\t\t*base\t\txMean\n\n"); - for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window - //window = xCount - _arraylength - //base = window - _arraylength; - //sum = 0.0; - //for( count = 0; count < _arraylength; count++){ - sum += *ptr; - // printf("%f\n", *base); - - //} - } - //printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW)); - return sum / (double)_arraylength; -} - -