/* =========================================================================== Created by Stefan Friese on 26.04.2018 =========================================================================== */ // #include #include #include #include #include //#include // DBL_MAX #include "nlms_types.h" // added types #define RGB_COLOR 255 #if defined(_MSC_VER) #include typedef SSIZE_T ssize_t; #endif double *xSamples; // Input values mldata_t *mlData = NULL; // Machine learning point_t *points = NULL; // Graphing /* *graph building* */ static imagePixel_t * rdPPM(char *fileName); // Read PPM file format void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file char *colorChannel, mldata_t *mlData); void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples /* *file handling* */ char * mkFileName ( char* buffer, size_t max_len, int suffixId ); char *fileSuffix ( int id ); char *fileHeader ( int id ); // Header inside the logfiles //void myLogger ( FILE* fp, point_t points[] ); void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template void mkSvgGraph ( point_t points[] ); // Parses graph template and calls bufferLogger() void weightsLogger ( double *weights, int suffix ); // Writes updated weights to a file /* *rand seed* */ double r2 ( void ); // Random val between 0 and 1 double rndm ( void ); /* *args parser* */ void usage ( char **argv ); // Help text called by args parser /* *math* */ mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate); double sum_array(double x[], int length); void localMean ( mldata_t *mlData,point_t points[] ); // First, void directPredecessor ( mldata_t *mlData, point_t points[] ); // Second, void differentialPredecessor ( mldata_t *mlData, point_t points[] ); // Third filter implementation double *popNAN(double *xError); // Returns array without NAN values, if any exist double windowXMean(int _arraylength, int xCount); // Returns mean value of given window int main( int argc, char **argv ) { char *colorChannel = (char *) malloc(sizeof(char)* 32); char *inputfile = (char *)malloc(sizeof(char) * 32); unsigned *seed = NULL; unsigned k, xclude = 0; unsigned windowSize = 5; unsigned samplesCount = 512; char *stdcolor = "green", xBuffer[512]; colorChannel = stdcolor; unsigned int uint_buffer[1], windowBuffer[1]; double learnrate = 0.4; while( (argc > 1) && (argv[1][0] == '-') ) { // Parses parameters from stdin switch( argv[1][1] ) { case 'i': inputfile = &argv[1][3]; ++argv; --argc; break; case 'w': sscanf(&argv[1][3], "%u", windowBuffer); windowSize = windowBuffer[0]; ++argv; --argc; break; case 'c': colorChannel = &argv[1][3]; ++argv; --argc; break; case 's': sscanf(&argv[1][3], "%u", uint_buffer); seed = &uint_buffer[0]; ++argv; --argc; break; case 'n': sscanf(&argv[1][3], "%u", &samplesCount); ++argv; --argc; break; case'h': printf("Program name: %s\n", argv[0]); usage(argv); break; case 'l': sscanf(&argv[1][3], "%lf", &learnrate); ++argv; --argc; break; case 'x': sscanf(&argv[1][3], "%s", xBuffer); xclude = 1; ++argv; --argc; break; default: printf("Wrong Arguments: %s\n", argv[1]); usage(argv); } ++argv; --argc; } init_mldata_t ( windowSize, samplesCount, learnrate ); xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount ); // Resize input values points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount); // Resize points imagePixel_t *image; image = rdPPM(inputfile); // Set Pointer on input values printf("window Size: %d\n", mlData->windowSize); char fileName[50]; // Logfiles and their names mkFileName(fileName, sizeof(fileName), TEST_VALUES); FILE* fp5 = fopen(fileName, "w"); //xLength = ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values, debugging FILE* fp6 = fopen(fileName, "r"); colorSamples(fp6, mlData); if ( (seed != NULL) ){ srand( *seed ); // Seed for random number generating printf("srand is reproducable\n"); } else { srand( (unsigned int)time(NULL) ); printf("srand depends on time\n"); // Default seed is time(NULL) } printf("generated weights:\n"); for (k = 0; k < mlData->windowSize; k++) { mlData->weights[k] = rndm(); // Init random weights printf("[%d] %lf\n", k, mlData->weights[k]); } mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights FILE *fp0 = fopen(fileName, "w"); for (k = 0; k < mlData->windowSize; k++) { fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); } fclose(fp0); /* *math magic* */ localMean ( mlData, points ); directPredecessor ( mlData, points); differentialPredecessor( mlData, points ); if ( xclude == 0 ) { mkSvgGraph(points); // Graph building } free(image); free(xSamples); free(points); free(mlData); printf("\nDONE!\n"); } /* ====================================================================================================== localMean Variant (1/3), substract local mean. ====================================================================================================== */ void localMean ( mldata_t *mlData, point_t points[] ) { double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1); memcpy ( localWeights, mlData->weights, mlData->windowSize ); // Copy weights so they can be changed locally char fileName[50]; double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n) memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero unsigned i, xCount = 0; // Runtime vars mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename FILE* fp4 = fopen(fileName, "w"); fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_LOCAL_MEAN); FILE *fp9 = fopen(fileName, "w"); double xMean = xSamples[0]; double xSquared = 0.0; double xPredicted = 0.0; double xActual = 0.0; for ( xCount = 1; xCount < mlData->samplesCount; xCount++ ) { // First value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; xPredicted = 0.0; xActual = xSamples[xCount]; for ( i = 1; i < _arrayLength; i++ ) { // Get predicted value xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xMean) ); } xPredicted += xMean; xError[xCount] = xActual - xPredicted; // Get error value xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { // Get xSquared xSquared += pow(xSamples[xCount - i] - xMean, 2); } if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions xSquared = 1.0; } for ( i = 1; i < _arrayLength; i++ ) { // Update weights localWeights[i] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean * ( (xSamples[xCount - i] - xMean) / xSquared ); fprintf( fp9, "%lf\n", localWeights[i] ); } fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[1] = xCount; // Save points so graph can be build later on points[xCount].yVal[1] = xPredicted; points[xCount].xVal[4] = xCount; points[xCount].yVal[4] = xError[xCount]; } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; for (i = 1; i < xErrorLength; i++) { // Mean square deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; // Deviation printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation); fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile free(localWeights); free(xErrorPtr); free(xError); fclose(fp4); //weightsLogger( local_weights, USED_WEIGHTS ); } /* ====================================================================================================== directPredecessor Variant (2/3), substract direct predecessor ====================================================================================================== */ void directPredecessor( mldata_t *mlData, point_t points[]) { double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 ); memcpy ( localWeights, mlData->weights, mlData->windowSize ); char fileName[512]; double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1 ); unsigned xCount = 0, i; double xActual = 0.0; double xPredicted = 0.0; mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling FILE *fp3 = fopen(fileName, "w"); fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED); FILE *fp9 = fopen(fileName, "w"); for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; for (i = 1; i < _arrayLength; i++) { xPredicted += ( localWeights[i - 1] * (xSamples[xCount - 1] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; double xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor } if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions xSquared = 1.0; } for ( i = 1; i < _arrayLength; i++ ) { // Update weights localWeights[i] = localWeights[i-1] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared); fprintf( fp9, "%lf\n", localWeights[i] ); } fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[2] = xCount; // Fill point_t array for graph building points[xCount].yVal[2] = xPredicted; points[xCount].xVal[5] = xCount; points[xCount].yVal[5] = xError[xCount]; // weightsLogger( fp, localWeights, USED_WEIGHTS ); } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // Stored length in [0] , won't be used anyway. Bit dirty //printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean double deviation = 0.0; for (i = 1; i < xErrorLength; i++) { deviation += pow(xError[i] - mean, 2); // Mean square } deviation /= xErrorLength; // Deviation printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation); fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); fclose(fp3); free(localWeights); free(xErrorPtr); free(xError); } /* ====================================================================================================== differentialPredecessor variant (3/3), differential predecessor. ====================================================================================================== */ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 ); memcpy( localWeights, mlData->weights, mlData->windowSize ); char fileName[512]; double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); unsigned xCount = 0, i; double xPredicted = 0.0; double xActual = 0.0; mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); // File handling FILE *fp6 = fopen(fileName, "w"); fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIFF_PRED); FILE *fp9 = fopen(fileName, "w"); for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // First value will not get predicted unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; for (i = 1; i < _arrayLength; i++) { xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; double xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // Substract direct predecessor } if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions xSquared = 1.0; } for (i = 1; i < _arrayLength; i++) { localWeights[i] = localWeights[i-1] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared); fprintf( fp9, "%lf\n", localWeights[i] ); } fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[3] = xCount; points[xCount].yVal[3] = xPredicted; points[xCount].xVal[6] = xCount; points[xCount].yVal[6] = xError[xCount]; } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; for (i = 1; i < xErrorLength; i++) { // Mean square deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation); fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); fclose(fp6); free(localWeights); free(xErrorPtr); free(xError); // weightsLogger( localWeights, USED_WEIGHTS ); } /* ====================================================================================================== mkFileName Writes the current date plus suffix with index suffixId into the given buffer. If the total length is longer than max_len, only max_len characters will be written. ====================================================================================================== */ char *mkFileName(char* buffer, size_t max_len, int suffixId) { const char * format_str = "%Y-%m-%d_%H_%M_%S"; // Date formatting size_t date_len; const char * suffix = fileSuffix(suffixId); time_t now = time(NULL); strftime(buffer, max_len, format_str, localtime(&now)); // Get Date date_len = strlen(buffer); strncat(buffer, suffix, max_len - date_len); // Concat filename return buffer; } /* ====================================================================================================== fileSuffix Contains and returns every suffix for all existing filenames ====================================================================================================== */ char * fileSuffix ( int id ) { char * suffix[] = { "_weights_pure.txt", "_weights_used_dir_pred_.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt", "_testvalues.txt", "_differential_predecessor.txt", "_weights_used_local_mean", "_weights_used_diff_pred", }; return suffix[id]; } /* ====================================================================================================== fileHeader Contains and returns header from logfiles ====================================================================================================== */ char * fileHeader ( int id ) { char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n", "\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n", "\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n" }; return header[id]; } /* ====================================================================================================== weightsLogger Logs used weights to logfile ====================================================================================================== */ void weightsLogger (double *weights, int val ) { char fileName[512]; unsigned i; mkFileName(fileName, sizeof(fileName), val); FILE* fp = fopen(fileName, "wa"); for (i = 0; i < mlData->windowSize - 1; i++) { fprintf(fp, "[%d]%lf\n", i, weights[i]); } fclose(fp); } /* ====================================================================================================== bufferLogger formats output of mkSvgGraph -- Please open graphResults.html to see the output-- [0] = xActual, [1] = xPredicted from localMean, [2] = xPredicted from directPredecessor, [3] = xPredicted from differentialpredecessor, [4] = xError from localMean, [5] = xError from directPredecessor, [6] = xError from differentialPredecessor ====================================================================================================== */ void bufferLogger(char *buffer, point_t points[]) { unsigned i; char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen // char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1); for (i = 0; i < mlData->samplesCount - 1; i++) { // xActual sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { // xPredicted from localMean sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPredicted from directPredecessor sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPredicted from diff Pred sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n"); } /* ====================================================================================================== sum_array Sum of all elements in x within a defined length ====================================================================================================== */ double sum_array(double x[], int xlength) { int i = 0; double sum = 0.0; if (xlength != 0) { for (i = 0; i < xlength; i++) { sum += x[i]; } } return sum; } /* ====================================================================================================== popNan returns new array without NAN values ====================================================================================================== */ double *popNAN(double *xError) { unsigned i, counter = 1; double tmpLength = 0.0; double *tmp = NULL; double *more_tmp = NULL; for ( i = 0; i < mlData->samplesCount - 1; i++ ) { counter ++; more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); if ( !isnan(xError[i]) ) { tmp = more_tmp; tmp[counter - 1] = xError[i]; //printf("xERROR:%lf\n", tmp[counter - 1]); tmpLength++; } } counter += 1; more_tmp = (double *) realloc ( tmp, counter * sizeof(double) ); tmp = more_tmp; *tmp = tmpLength; // Length of array is stored inside tmp[0]. tmp[0] is never used anyways return tmp; } /* ====================================================================================================== r2 returns a random double value between 0 and 1 ====================================================================================================== */ double r2(void) { return((rand() % 10000) / 10000.0); } /* ====================================================================================================== rndm fills a double variable with random value and returns it ====================================================================================================== */ double rndm(void) { double rndmval = r2(); return rndmval; } /* ====================================================================================================== mkSvgGraph parses template.svg and writes results in said template ====================================================================================================== */ void mkSvgGraph(point_t points[]) { FILE *input = fopen("graphResults_template.html", "r"); FILE *target = fopen("graphResults.html", "w"); char line[512]; char firstGraph[15] = { "samplesCount ) + fpLength + 1 ) ); memset(buffer, '\0', sizeof(buffer)); while (!feof(input)) { // parses file until "firstGraph" has been found fgets(line, 512, input); strncat(buffer, line, strlen(line)); if (strstr(line, firstGraph) != NULL) { // Compares line <-> "firstGraph" bufferLogger(buffer, points); // write points } } fprintf(target, buffer); } /* ====================================================================================================== rdPPM reads data from file of type PPM, stores colorchannels in a struct in the size of given picture ====================================================================================================== */ static imagePixel_t *rdPPM(char *fileName) { char buffer[16]; imagePixel_t *image; int c, rgbColor; double *tmp; FILE *fp = fopen(fileName, "rb"); if (!fp) { exit(EXIT_FAILURE); } if (!fgets(buffer, sizeof(buffer), fp)) { perror(fileName); exit(EXIT_FAILURE); } if (buffer[0] != 'P' || buffer[1] != '6') { fprintf(stderr, "No PPM file format\n"); exit(EXIT_FAILURE); } image = (imagePixel_t *)malloc(sizeof(imagePixel_t)); if (!image) { fprintf(stderr, "malloc() failed"); } c = getc(fp); while (c == '#') { while (getc(fp) != '\n'); c = getc(fp); } ungetc(c, fp); if ( fscanf(fp, "%d %d", &image->x, &image->y) != 2 ) { fprintf(stderr, "Invalid image size in %s\n", fileName); exit(EXIT_FAILURE); } if ( fscanf(fp, "%d", &rgbColor) != 1 ) { fprintf(stderr, "Invalid rgb component in %s\n", fileName); } if ( rgbColor != RGB_COLOR ) { fprintf(stderr, "Invalid image color range in %s\n", fileName); exit(EXIT_FAILURE); } while ( fgetc(fp) != '\n' ); image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t)); if (!image) { fprintf(stderr, "malloc() on image->data failed"); exit(EXIT_FAILURE); } if ( (image->x * image->y) < mlData->samplesCount) { printf("Changing \"-n\" to %d, image max data size\n", ( image->x * image->y ) ); tmp = (double *) realloc ( xSamples, sizeof(double) * (image->x * image->y) ); xSamples = tmp; mlData->samplesCount = (image->x * image->y ) / sizeof(double); } if ( fread( image->data, 3 * image->x, image->y, fp) != image->y) { fprintf(stderr, "Loading image failed"); exit(EXIT_FAILURE); } fclose(fp); return image; } /* ====================================================================================================== mkPpmFile gets output from result of rdPPM and writes a new PPM file. Best Case is a carbon copy of the source image. Build for debugging. ====================================================================================================== */ void mkPpmFile(char *fileName, imagePixel_t *image) { FILE* fp = fopen(fileName, "wb"); if (!fp) { fprintf(stderr, "Opening file failed."); exit(EXIT_FAILURE); } fprintf(fp, "P6\n"); fprintf(fp, "%d %d\n", image->x, image->y); fprintf(fp, "%d\n", RGB_COLOR); fwrite(image->data, 3 * image->x, image->y, fp); fclose(fp); } /* ====================================================================================================== ppmColorChannel gets one of the rgb color channels and writes them to a file ====================================================================================================== */ int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) { unsigned i = 0; printf("colorChannel : %s\n", colorChannel); if ( image ) { // RGB channel can be set through args from cli if ( strcmp(colorChannel, "green") == 0 ){ for ( i = 0; i < mlData->samplesCount - 1; i++ ) { fprintf ( fp, "%d\n", image->data[i].green ); } } else if ( strcmp(colorChannel, "red") == 0 ){ for ( i = 0; i < mlData->samplesCount - 1; i++ ) { fprintf ( fp, "%d\n", image->data[i].red ); } } else if ( strcmp(colorChannel, "blue") == 0 ) { for ( i = 0; i < mlData->samplesCount - 1; i++ ) { fprintf ( fp, "%d\n", image->data[i].blue ); } } else { printf("Colorchannels are red, green and blue. Pick one of them!"); exit( EXIT_FAILURE ); } } fclose(fp); return mlData->samplesCount; // returned for debugging, TODO: void PPmcolorChannel } /* ====================================================================================================== colorSamples reads colorChannel values from file and stores them in xSamples as well as in points datatype for creating the SVG graph ====================================================================================================== */ void colorSamples ( FILE* fp, mldata_t *mlData ) { int i = 0; char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount + 1); while (!feof(fp)) { if (fgets(buffer, mlData->samplesCount, fp) != NULL) { sscanf(buffer, "%lf", &xSamples[i]); //printf("%lf\n", xSamples[i] ); points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph points[i].xVal[0] = i; ++i; } } fclose(fp); } /* ====================================================================================================== windowXMean returns mean value of given input ====================================================================================================== */ double windowXMean(int _arraylength, int xCount) { double sum = 0.0; double *ptr; for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window sum += *ptr; } return sum / (double)_arraylength; } /* ====================================================================================================== usage used in conjunction with the args parser. Returns help section of "-h" ====================================================================================================== */ void usage ( char **argv ) { printf("Usage: %s [POSIX style options] -i file ...\n", &argv[0][0]); printf("POSIX options:\n"); printf("\t-h\t\t\tDisplay this information.\n"); printf("\t-i \t\tName of inputfile. Must be PPM image.\n"); printf("\t-n \t\tAmount of input data used.\n"); printf("\t-c \t\tUse this color channel from inputfile.\n"); printf("\t-w \t\tCount of used weights (windowSize).\n"); printf("\t-l \t\tLearnrate, 0 < learnrate < 1.\n"); printf("\t-x true\t\t\tLogfiles only, no graph building.\n\t\t\t\tChoose for intense amount of input data.\n"); printf("\t-s \t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n"); printf("\n\n"); printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -x true\n", &argv[0][0], &argv[0][0]); exit(8); } /* ====================================================================================================== init_mldata_t Contains meachine learning data ====================================================================================================== */ mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate) { mlData = (mldata_t *) malloc( sizeof(mldata_t) ); mlData->windowSize = windowSize; mlData->samplesCount = samplesCount; mlData->learnrate = learnrate; mlData->weights = (double *) malloc ( sizeof(double) * windowSize + 1 ); return mlData; }