/* =========================================================================== Created by Stefan Friese on 26.04.2018 =========================================================================== */ // #include #include #include #include #include //#include // DBL_MAX #include "nlms_types.h" // added types #define RGB_COLOR 255 #if defined(_MSC_VER) #include typedef SSIZE_T ssize_t; #endif typedef struct { double *weights; unsigned windowSize; unsigned samplesCount; double learnrate; } mldata_t; enum fileHeader{ LOCAL_MEAN_HEADER, DIRECT_PREDECESSOR_HEADER, DIFFERENTIAL_PREDECESSOR_HEADER }; double *xSamples; mldata_t *mlData = NULL; // Machine learning point_t *points = NULL; // Graphing /* *graph building* */ static imagePixel_t * rdPPM(char *fileName); // Read PPM file format void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file char *colorChannel, mldata_t *mlData); void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples /* *file handling* */ char * mkFileName ( char* buffer, size_t max_len, int suffixId ); char *fileSuffix ( int id ); char *fileHeader ( int id ); // Header inside the logfiles //void myLogger ( FILE* fp, point_t points[] ); void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template void mkSvgGraph ( point_t points[] ); // Parses graph template and calls bufferLogger() void weightsLogger ( double *weights, int suffix ); // Writes updated weights to a file /* *rand seed* */ double r2 ( void ); // Random val between 0 and 1 double rndm ( void ); /* *args parser* */ void usage ( void ); // Help text called by args parser /* *math* */ mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate); double sum_array(double x[], int length); void localMean ( mldata_t *mlData,point_t points[] ); // First, void directPredecessor ( mldata_t *mlData, point_t points[] ); // Second, void differentialPredecessor ( mldata_t *mlData, point_t points[] ); // Third filter implementation double *popNAN(double *xError); // Returns array without NAN values, if any exist double windowXMean(int _arraylength, int xCount); // Returns mean value of given window int main( int argc, char **argv ) { char *colorChannel = (char *) malloc(sizeof(char)* 32); char *inputfile = (char *)malloc(sizeof(char) * 32); unsigned int *seed = NULL; unsigned k, xLength; unsigned int windowSize = 5; unsigned int samplesCount = 501; char *stdcolor = "green"; colorChannel = stdcolor; unsigned int uint_buffer[1]; double learnrate = 0.8; while( (argc > 1) && (argv[1][0] == '-') ) { // Parses parameters from stdin switch( argv[1][1] ) { case 'i': inputfile = &argv[1][3]; ++argv; --argc; break; case 'w': sscanf(&argv[1][3], "%u", &windowSize); ++argv; --argc; break; case 'c': colorChannel = &argv[1][3]; ++argv; --argc; break; case 's': sscanf(&argv[1][3], "%u", uint_buffer); seed = &uint_buffer[0]; ++argv; --argc; break; case 'n': sscanf(&argv[1][3], "%u", &samplesCount); ++argv; --argc; break; case'h': printf("Program name: %s\n", argv[0]); usage(); break; case 'l': sscanf(&argv[1][3], "%lf", &learnrate); ++argv; --argc; break; default: printf("Wrong Arguments: %s\n", argv[1]); usage(); } ++argv; --argc; } init_mldata_t(windowSize, samplesCount, learnrate); xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount ); points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount); imagePixel_t *image; char fileName[50]; image = rdPPM(inputfile); mkFileName(fileName, sizeof(fileName), TEST_VALUES); FILE* fp5 = fopen(fileName, "w"); xLength = ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values printf("%d\n", xLength); FILE* fp6 = fopen(fileName, "r"); colorSamples(fp6, mlData); if ( (seed != NULL) ){ srand( *seed ); // Seed for random number generating printf("srand is reproducable : %u", seed); } else { srand( (unsigned int)time(NULL) ); printf("srand from time\n"); // Default seed is time(NULL) } // for (i = 0; i < NUMBER_OF_SAMPLES; i++) { for (k = 0; k < mlData->windowSize; k++) { mlData->weights[k] = rndm(); // Init random weights printf("%lf\n", mlData->weights[k]); } // } mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); FILE *fp0 = fopen(fileName, "w"); // for (i = 0; i < NUMBER_OF_SAMPLES; i++) { for (k = 0; k < mlData->windowSize; k++) { fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]); // Save generated weights to to file } // } fclose(fp0); // math magic localMean ( mlData, points ); directPredecessor ( mlData, points); differentialPredecessor( mlData, points ); mkSvgGraph(points); free(xSamples); free(points); printf("\nDONE!\n"); } /* ====================================================================================================== localMean Variant (1/3), substract local mean. ====================================================================================================== */ void localMean ( mldata_t *mlData, point_t points[] ) { // double (*local_weights)[WINDOWSIZE] =(double (*)[WINDOWSIZE]) malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1)); //memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES); double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1); memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) ); // TODO: check size !!! char fileName[50]; double xError[2048]; // includes e(n) memset(xError, 0.0, mlData->samplesCount);// initialize xError-array with Zero unsigned i, xCount = 0; // runtime var mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); FILE* fp4 = fopen(fileName, "w"); fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) ); double xMean = xSamples[0]; double xSquared = 0.0; double xPredicted = 0.0; double xActual = 0.0; for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; xPredicted = 0.0; xActual = xSamples[xCount]; for (i = 1; i < _arrayLength; i++) { //get predicted value xPredicted += (localWeights[i] * (xSamples[xCount - i] - xMean)); } xPredicted += xMean; xError[xCount] = xActual - xPredicted; xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { //get xSquared xSquared += pow(xSamples[xCount - i] - xMean, 2); } if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions xSquared = 1.0; } for ( i = 1; i < _arrayLength; i++ ) { //update weights localWeights[ i + 1 ] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - i] - xMean) / xSquared ); } fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); points[xCount].xVal[1] = xCount; points[xCount].yVal[1] = xPredicted; points[xCount].xVal[4] = xCount; points[xCount].yVal[4] = xError[xCount]; } double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; // Mean square for (i = 1; i < xErrorLength; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; printf("mean:%lf, devitation:%lf", mean, deviation); // write in file //mkFileName(fileName, sizeof(fileName), RESULTS); //FILE *fp2 = fopen(fileName, "w"); fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); //fclose(fp2); free(localWeights); fclose(fp4); //weightsLogger( local_weights, USED_WEIGHTS ); } /* ====================================================================================================== directPredecessor Variant (2/3), substract direct predecessor ====================================================================================================== */ void directPredecessor( mldata_t *mlData, point_t points[]) { double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 ); memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) ); char fileName[512]; double xError[2048]; unsigned xCount = 0, i; double xActual = 0.0; double xPredicted = 0.0; mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); FILE *fp3 = fopen(fileName, "w"); fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) ); mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS); FILE *fp9 = fopen(fileName, "w"); for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; for (i = 1; i < _arrayLength; i++) { xPredicted += ( localWeights[i - 1] * (xSamples[xCount - 1] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; double xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor } for (i = 1; i < _arrayLength; i++) { localWeights[i + 1] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared); fprintf( fp9, "%lf\n", localWeights[i] ); } fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); points[xCount].xVal[2] = xCount; // Fill point_t array for graph building points[xCount].yVal[2] = xPredicted; points[xCount].xVal[5] = xCount; points[xCount].yVal[5] = xError[xCount]; // weightsLogger( fp, localWeights, USED_WEIGHTS ); } fclose(fp9); double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] //printf("%lf", xErrorPtr[499]); double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; //printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; // Mean square for (i = 1; i < xErrorLength; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; printf("mean:%lf, devitation:%lf", mean, deviation); // write in file //mkFileName(fileName, sizeof(fileName), RESULTS); //FILE *fp2 = fopen(fileName, "wa"); fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); fclose(fp3); //fclose(fp2); free(localWeights); } /* ====================================================================================================== differentialPredecessor variant (3/3), differential predecessor. ====================================================================================================== */ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) { double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 ); memcpy( localWeights, mlData->weights, sizeof(mlData->windowSize) ); char fileName[512]; double xError[2048]; unsigned xCount = 0, i; double xPredicted = 0.0; double xActual = 0.0; // File handling mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); FILE *fp6 = fopen(fileName, "w"); fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) ); for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount; xPredicted = 0.0; xActual = xSamples[xCount]; for (i = 1; i < _arrayLength; i++) { xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; double xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor } for (i = 1; i < _arrayLength; i++) { localWeights[i+1] = localWeights[i] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared); } fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile points[xCount].xVal[3] = xCount; points[xCount].yVal[3] = xPredicted; points[xCount].xVal[6] = xCount; points[xCount].yVal[6] = xError[xCount]; } double *xErrorPtr = popNAN(xError); // delete NAN values from xError[] //printf("%lf", xErrorPtr[499]); double xErrorLength = *xErrorPtr; // Watch popNAN()! xErrorPtr[0] = 0.0; // printf("Xerrorl:%lf", xErrorLength); double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; double deviation = 0.0; // Mean square for (i = 1; i < xErrorLength; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; printf("mean:%lf, devitation:%lf", mean, deviation); // write in file //mkFileName(fileName, sizeof(fileName), RESULTS); //FILE *fp2 = fopen(fileName, "wa"); fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); //fclose(fp2); fclose(fp6); free(localWeights); // weightsLogger( localWeights, USED_WEIGHTS ); } /* ====================================================================================================== mkFileName Writes the current date plus the suffix with index suffixId into the given buffer. If the total length is longer than max_len, only max_len characters will be written. ====================================================================================================== */ char *mkFileName(char* buffer, size_t max_len, int suffixId) { const char * format_str = "%Y-%m-%d_%H_%M_%S"; size_t date_len; const char * suffix = fileSuffix(suffixId); time_t now = time(NULL); strftime(buffer, max_len, format_str, localtime(&now)); date_len = strlen(buffer); strncat(buffer, suffix, max_len - date_len); return buffer; } /* ====================================================================================================== fileSuffix Contains and returns every suffix for all existing filenames ====================================================================================================== */ char * fileSuffix ( int id ) { char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt", "_testvalues.txt", "_differential_predecessor.txt" }; return suffix[id]; } /* ====================================================================================================== fileHeader Contains and returns header for logfiles ====================================================================================================== */ char * fileHeader ( int id ) { char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n", "\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n", "\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n" }; return header[id]; } /* ====================================================================================================== myLogger Logs x,y points to svg graph ====================================================================================================== */ void weightsLogger (double *weights, int val ) { char fileName[512]; unsigned i; mkFileName(fileName, sizeof(fileName), val); FILE* fp = fopen(fileName, "wa"); for (i = 0; i < mlData->windowSize - 1; i++) { // for (int k = 0; k < WINDOWSIZE; k++) { fprintf(fp, "[%d]%lf\n", i, weights[i]); // } } fprintf(fp,"\n\n\n\n===================== NEXT =====================\n"); fclose(fp); } /* ====================================================================================================== bufferLogger formats output of mkSvgGraph -- Please open graphResults.html to see the output-- [0] = xActual, [1] = xPredicted from localMean, [2] = xPredicted from directPredecessor, [3] = xPredicted from differentialpredecessor, [4] = xError from localMean, [5] = xError from directPredecessor, [6] = xError from differentialPredecessor ====================================================================================================== */ void bufferLogger(char *buffer, point_t points[]) { unsigned i; char _buffer[512] = ""; for (i = 0; i < mlData->samplesCount - 1; i++) { // xActual sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { // xPredicted from localMean sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPreddicted from directPredecessor sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\nsamplesCount - 1; i++) { //xPredicted from diff Pred sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n"); } /* ====================================================================================================== sum_array Sum of all elements in x within a defined length ====================================================================================================== */ double sum_array(double x[], int xlength) { int i = 0; double sum = 0.0; if (xlength != 0) { for (i = 0; i < xlength; i++) { sum += x[i]; } } return sum; } /* ====================================================================================================== popNanLength returns length of new array without NAN values ====================================================================================================== */ double *popNAN(double *xError) { unsigned i, counter = 1; double tmpLength = 0.0; double *tmp = NULL; double *more_tmp = NULL; for ( i = 0; i < mlData->samplesCount - 1; i++ ) { counter ++; more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) )); if ( !isnan(xError[i]) ) { tmp = more_tmp; tmp[counter - 1] = xError[i]; //printf("xERROR:%lf\n", tmp[counter - 1]); tmpLength++; } } counter += 1; more_tmp = (double *) realloc ( tmp, counter * sizeof(double) ); tmp = more_tmp; *tmp = tmpLength; // Length of array has to be stored in tmp[0], // Cause length is needed later on in the math functions. // xError counting has to begin with 1 in the other functions ! printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp); return tmp; } /* ====================================================================================================== r2 returns a random double value between 0 and 1 ====================================================================================================== */ double r2(void) { return((rand() % 10000) / 10000.0); } /* ====================================================================================================== rndm fills a double variable with random value and returns it ====================================================================================================== */ double rndm(void) { double rndmval = r2(); return rndmval; } /* ====================================================================================================== mkSvgGraph parses template.svg and writes results in said template ====================================================================================================== */ void mkSvgGraph(point_t points[]) { FILE *input = fopen("graphResults_template.html", "r"); FILE *target = fopen("graphResults.html", "w"); char line[512]; char firstGraph[15] = { "x, &image->y) != 2) { fprintf(stderr, "Invalid image size in %s\n", fileName); exit(EXIT_FAILURE); } if (fscanf(fp, "%d", &rgbColor) != 1) { fprintf(stderr, "Invalid rgb component in %s\n", fileName); } if (rgbColor != RGB_COLOR) { fprintf(stderr, "Invalid image color range in %s\n", fileName); exit(EXIT_FAILURE); } while (fgetc(fp) != '\n'); image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t)); if (!image) { fprintf(stderr, "malloc() failed"); exit(EXIT_FAILURE); } if (fread(image->data, 3 * image->x, image->y, fp) != image->y) { fprintf(stderr, "Loading image failed"); exit(EXIT_FAILURE); } fclose(fp); return image; } /* ====================================================================================================== mkPpmFile gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a carbon copy of the source image. Build for debugging ====================================================================================================== */ void mkPpmFile(char *fileName, imagePixel_t *image) { FILE* fp = fopen(fileName, "wb"); if (!fp) { fprintf(stderr, "Opening file failed."); exit(EXIT_FAILURE); } fprintf(fp, "P6\n"); fprintf(fp, "%d %d\n", image->x, image->y); fprintf(fp, "%d\n", RGB_COLOR); fwrite(image->data, 3 * image->x, image->y, fp); fclose(fp); } /* ====================================================================================================== ppmColorChannel gets one of the rgb color channels and writes them to a file ====================================================================================================== */ int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) { // int length = (image->x * image->y) / 3; unsigned i = 0; printf("colorChannel in Function: %s", colorChannel); if (image) { if (strcmp(colorChannel, "green") == 0){ for (i = 0; i < mlData->samplesCount - 1; i++) { fprintf(fp, "%d\n", image->data[i].green); printf("|"); } } else if (strcmp(colorChannel, "red") == 0){ for (i = 0; i < mlData->samplesCount - 1; i++) { fprintf(fp, "%d\n", image->data[i].red); printf("."); } } else if (strcmp(colorChannel, "blue") == 0 ) { for (i = 0; i < mlData->samplesCount - 1; i++ ) { fprintf(fp, "%d\n", image->data[i].blue); printf("/"); } } else { printf("Colorchannels are red, green and blue. Pick one of them!"); exit(EXIT_FAILURE); } } fclose(fp); return mlData->samplesCount; } /* ====================================================================================================== colorSamples reads colorChannel values from file and stores them in xSamples as well as in points datatype for creating the SVG graph ====================================================================================================== */ void colorSamples ( FILE* fp, mldata_t *mlData ) { int i = 0; //char buffer[NUMBER_OF_SAMPLES]; char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount); while (!feof(fp)) { if (fgets(buffer, mlData->samplesCount, fp) != NULL) { sscanf(buffer, "%lf", &xSamples[i]); //printf("%lf\n", xSamples[i] ); points[i].yVal[0] = xSamples[i]; points[i].xVal[0] = i; ++i; } } fclose(fp); } /* ====================================================================================================== windowXMean returns mean value of given input, which has a length of WINDOWSIZE ====================================================================================================== */ double windowXMean(int _arraylength, int xCount) { double sum = 0.0; double *ptr; for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window sum += *ptr; } return sum / (double)_arraylength; } /* ====================================================================================================== usage used in conjunction with the args parser. Returns help section of "-h" ====================================================================================================== */ void usage ( void ) { printf("Usage: lms [POSIX style options] -i file ...\n"); printf("POSIX options:\n"); printf("\t-h\t\t\tDisplay this information.\n"); printf("\t-i \t\tName of inputfile. Must be PPM image.\n"); printf("\t-n \t\tAmount of input data used.\n"); printf("\t-c \t\tUse this color channel from inputfile.\n"); printf("\t-w \t\tCount of used weights (windowSize).\n"); printf("\t-l \t\tLearnrate, 0 < learnrate < 1.\n"); printf("\t-s \t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time."); printf("\n\n"); printf("lms compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\tlms -i myimage.ppm -w 3 -c green -s 5\n"); exit(8); } /* ====================================================================================================== init_mldata_t Contains meachine learning data ====================================================================================================== */ mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate) { mlData = (mldata_t *) malloc( sizeof(mldata_t) ); mlData->windowSize = windowSize; mlData->samplesCount = samplesCount; mlData->learnrate = learnrate; mlData->weights = (double *) malloc ( sizeof(double) * windowSize + 1 ); return mlData; }