// // // NLMSvariants.c // // Created by FBRDNLMS on 26.04.18. // // #include #include #include #include #include #include // DBL_MAX #define NUMBER_OF_SAMPLES 1000 #define WINDOWSIZE 5 #define tracking 40 //Count of weights #define learnrate 0.8 #define PURE_WEIGHTS 0 #define USED_WEIGHTS 1 #define RESULTS 3 #define DIRECT_PREDECESSOR 2 #define LOCAL_MEAN 4 #define TEST_VALUES 5 #define DIFFERENTIAL_PREDECESSOR 6 #define RGB_COLOR 255 #if defined(_MSC_VER) #include typedef SSIZE_T ssize_t; #endif //double x[] = { 0.0 }; double xSamples[NUMBER_OF_SAMPLES] = { 0.0 }; double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } }; /* *svg graph building* */ typedef struct { double xVal[7]; double yVal[7]; }point_t; point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor /* *ppm read, copy, write* */ typedef struct { unsigned char red, green, blue; }colorChannel_t; typedef struct { int x, y; colorChannel_t *data; }imagePixel_t; static imagePixel_t * rdPPM(char *fileName); // read PPM file format void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file void colorSamples( FILE* fp ); // stores color channel values in xSamples[] /* *file handling* */ char * mkFileName(char* buffer, size_t max_len, int suffixId); char *fileSuffix(int id); void myLogger(FILE* fp, point_t points[]); void mkSvgGraph(point_t points[]); /* *rand seed* */ double r2(void); double rndm(void); /* *math* */ double sum_array(double x[], int length); void directPredecessor(void); void localMean(void); void differentialPredecessor( void ); double *popNAN(double *xError, int xErrorLength); //return new array without NAN values double windowXMean( int _arraylength, int xCount ); int main(int argc, char **argv) { char fileName[50]; int i, k, xLength; int *colorChannel; imagePixel_t *image; image = rdPPM("cow.ppm"); mkFileName(fileName, sizeof(fileName), TEST_VALUES); FILE* fp5 = fopen(fileName, "w"); xLength = ppmColorChannel(fp5, image); printf("%d\n", xLength); FILE* fp6 = fopen(fileName, "r"); colorSamples ( fp6 ); srand((unsigned int)time(NULL)); for (i = 0; i < NUMBER_OF_SAMPLES; i++) { // _x[i] += ((255.0 / M) * i); // Init test values for (int k = 0; k < WINDOWSIZE; k++) { w[k][i]= rndm(); // Init weights } } mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // save plain test_array before math magic happens FILE *fp0 = fopen(fileName, "w"); for (i = 0; i <= tracking; i++) { for ( k = 0; k < WINDOWSIZE; k++) { fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]); } } fclose(fp0); // math magic localMean(); //directPredecessor(); //differentialPredecessor(); // save test_array after math magic happened // memset( fileName, '\0', sizeof(fileName) ); mkFileName(fileName, sizeof(fileName), USED_WEIGHTS); FILE *fp1 = fopen(fileName, "w"); for (i = 0; i < tracking; i++) { for (int k = 0; k < WINDOWSIZE; k++) { fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]); } } fclose(fp1); // getchar(); printf("DONE!"); } /* ====================================================================================================== localMean Variant (1/3), substract local mean. ====================================================================================================== */ void localMean(void) { char fileName[50]; double xError[NUMBER_OF_SAMPLES]; // includes e(n) memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero int xCount = 0, i; // runtime var; mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); FILE* fp4 = fopen(fileName, "w"); fprintf(fp4, "\n=====================================LocalMean=====================================\n"); double xMean = xSamples[0]; double weightedSum = 0.0; double filterOutput = 0.0; double xSquared = 0.0; double xPredicted = 0.0; double xActual = 0.0; for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted double xPartArray[xCount]; //includes all values at the size of runtime var //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; //printf("xCount:%d, length:%d\n", xCount, _arrayLength); xMean = ( xCount > 0 ) ? windowXMean(_arrayLength, xCount) : 0; // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount)); xPredicted = 0.0; xActual = xSamples[xCount + 1]; // weightedSum += _x[ xCount-1 ] * w[xCount][0]; for (i = 1; i < _arrayLength ; i++) { //get predicted value xPredicted += (w[i][xCount] * ( xSamples[xCount - i] - xMean)); } xPredicted += xMean; xError[xCount] = xActual - xPredicted; printf("Pred: %f\t\tActual:%f\n", xPredicted,xActual); points[xCount].xVal[1] = xCount; points[xCount].yVal[1] = xPredicted; points[xCount].xVal[4] = xCount; points[xCount].yVal[4] = xError[xCount]; xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { //get xSquared //xSquared += pow(xSamples[xCount - i], 2); xSquared += pow(xSamples[xCount - i] - xMean, 2); printf("xSquared:%f\n", xSquared); } if(xSquared == 0.0){ // returns Pred: -1.#IND00 xSquared = 1.0; } //printf("%f\n", xSquared); for (i = 1; i < _arrayLength; i++) { //update weights w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - i] - xMean) / xSquared); } fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); } int xErrorLength = sizeof(xError) / sizeof(xError[0]); printf("vor:%d", xErrorLength); popNAN(xError, xErrorLength); printf("nach:%d", xErrorLength); xErrorLength = sizeof(xError) / sizeof(xError[0]); double mean = sum_array(xError, xErrorLength) / xErrorLength; double deviation = 0.0; // Mean square for (i = 0; i < xErrorLength - 1; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; // write in file mkFileName(fileName, sizeof(fileName), RESULTS); FILE *fp2 = fopen(fileName, "w"); fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean); fclose(fp2); fclose(fp4); } /* ====================================================================================================== directPredecessor Variant (2/3), substract direct predecessor ====================================================================================================== */ void directPredecessor(void) { char fileName[512]; double xError[2048]; int xCount = 0, i; double xActual; int xPredicted = 0.0; // File handling mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); FILE *fp3 = fopen(fileName, "w"); fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n"); for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) { double xPartArray[xCount]; //includes all values at the size of runtime var //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; printf("xCount:%d, length:%d\n", xCount, _arrayLength); double xMean = ( xCount > 0 ) ? windowXMean(_arrayLength, xCount) : 0; printf("%f\n", windowXMean(_arrayLength, xCount)); xPredicted = 0.0; xActual = xSamples[xCount + 1]; for (i = 1; i < _arrayLength; i++) { xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); points[xCount].xVal[2] = xCount; points[xCount].yVal[2] = xPredicted; points[xCount].xVal[5] = xCount; points[xCount].yVal[5] = xError[xCount]; double xSquared = 0.0; for (i = 1; i < _arrayLength; i++) { xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor } for (i = 1; i < _arrayLength; i++) { w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared); } } int xErrorLength = sizeof(xError) / sizeof(xError[0]); printf("vor:%d", xErrorLength); popNAN(xError, xErrorLength); printf("nach:%d", xErrorLength); xErrorLength = sizeof(xError) / sizeof(xError[0]); double mean = sum_array(xError, xErrorLength) / xErrorLength; double deviation = 0.0; for (i = 0; i < xErrorLength - 1; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; mkSvgGraph(points); fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fclose(fp3); } /* ====================================================================================================== differentialPredecessor variant (3/3), differenital predecessor. ====================================================================================================== */ void differentialPredecessor ( void ) { char fileName[512]; double xError[2048]; int xCount = 0, i; double xActual; // File handling mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); FILE *fp6 = fopen(fileName, "w"); fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n"); for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) { xActual = xSamples[xCount + 1]; double xPredicted = 0.0; for (i = 1; i < xCount; i++) { xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1])); } xPredicted += xSamples[xCount - 1]; xError[xCount] = xActual - xPredicted; fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); points[xCount].xVal[3] = xCount; points[xCount].yVal[3] = xPredicted; points[xCount].xVal[6] = xCount; points[xCount].yVal[6] = xError[xCount]; double xSquared = 0.0; for (i = 1; i < xCount; i++) { xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor } for (i = 1; i < xCount; i++) { w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared); } } int xErrorLength = sizeof(xError) / sizeof(xError[0]); double mean = sum_array(xError, xErrorLength) / xErrorLength; double deviation = 0.0; for (i = 0; i < xErrorLength - 1; i++) { deviation += pow(xError[i] - mean, 2); } deviation /= xErrorLength; mkSvgGraph(points); fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fclose(fp6); } /* ====================================================================================================== mkFileName Writes the current date plus the suffix with index suffixId into the given buffer. If the total length is longer than max_len, only max_len characters will be written. ====================================================================================================== */ char *mkFileName(char* buffer, size_t max_len, int suffixId) { const char * format_str = "%Y-%m-%d_%H_%M_%S"; size_t date_len; const char * suffix = fileSuffix(suffixId); time_t now = time(NULL); strftime(buffer, max_len, format_str, localtime(&now)); date_len = strlen(buffer); strncat(buffer, suffix, max_len - date_len); return buffer; } /* ====================================================================================================== fileSuffix Contains and returns every suffix for all existing filenames ====================================================================================================== */ char * fileSuffix(int id) { char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" }; return suffix[id]; } /* ====================================================================================================== myLogger Logs x,y points to svg graph ====================================================================================================== */ void bufferLogger(char *buffer, point_t points[]) { int i; char _buffer[512] = ""; for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); strcat(buffer, _buffer); } strcat(buffer, "\" fill=\"none\" stroke=\"black\" stroke-width=\"0.4px\"/>\n\n\nx, &image->y) != 2) { fprintf(stderr, "Invalid image size in %s\n", fileName); exit(EXIT_FAILURE); } if (fscanf(fp, "%d", &rgbColor) != 1) { fprintf(stderr, "Invalid rgb component in %s\n", fileName); } if (rgbColor != RGB_COLOR) { fprintf(stderr, "Invalid image color range in %s\n", fileName); exit(EXIT_FAILURE); } while (fgetc(fp) != '\n'); image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t)); if (!image) { fprintf(stderr, "malloc() failed"); exit(EXIT_FAILURE); } if (fread(image->data, 3 * image->x, image->y, fp) != image->y) { fprintf(stderr, "Loading image failed"); exit(EXIT_FAILURE); } fclose(fp); return image; } /* ====================================================================================================== mkPpmFile gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a carbon copy of the source image. Build for debugging ====================================================================================================== */ void mkPpmFile(char *fileName, imagePixel_t *image) { FILE* fp = fopen(fileName, "wb"); if (!fp) { fprintf(stderr, "Opening file failed."); exit(EXIT_FAILURE); } fprintf(fp, "P6\n"); fprintf(fp, "%d %d\n", image->x, image->y); fprintf(fp, "%d\n", RGB_COLOR); fwrite(image->data, 3 * image->x, image->y, fp); fclose(fp); } /* ====================================================================================================== ppmColorChannel gets one of the rgb color channels and writes them to a file ====================================================================================================== */ int ppmColorChannel(FILE* fp, imagePixel_t *image) { // int length = 1000; // (image->x * image->y) / 3; int i = 0; if (image) { for ( i = 0; i < NUMBER_OF_SAMPLES - 1; i++ ){ fprintf(fp,"%d\n", image->data[i].green); } } fclose(fp); return NUMBER_OF_SAMPLES; } /* ====================================================================================================== colorSamples reads colorChannel values from file and stores them in xSamples as well as points datatype for creating the SVG graph ====================================================================================================== */ void colorSamples( FILE* fp ) { int i = 0; int d, out; double f; char buffer[NUMBER_OF_SAMPLES]; while ( !feof(fp) ) { if ( fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL ) { sscanf(buffer,"%lf", &xSamples[i]); //printf("%lf\n", xSamples[i] ); points[i].yVal[0] = xSamples[i]; points[i].xVal[0] = i; ++i; } } fclose(fp); } double windowXMean (int _arraylength, int xCount) { int count; double sum = 0.0; double *ptr; // printf("*window\t\t*base\t\txMean\n\n"); for ( ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window //window = xCount - _arraylength //base = window - _arraylength; //sum = 0.0; //for( count = 0; count < _arraylength; count++){ sum += *ptr; // printf("%f\n", *base); //} } //printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW)); return sum/(double)_arraylength; }