// // // NLMSvariants.c // // Created by FBRDNLMS on 26.04.18. // Copyright © 2018 FBRDNLMS. All rights reserved. // #include #include #include #include #include #include // DBL_MAX #define M 100 #define tracking 40 //Count of weights #define learnrate 1.0 #define PURE_WEIGHTS 0 #define USED_WEIGHTS 1 #define RESULTS 3 #define DIRECT_PREDECESSOR 2 #define LOCAL_MEAN 4 double x[] = {0}; double _x[M] = {0}; double w [M][M]={{0},{0}}; /* graph building */ typedef struct { double xVal[7]; double yVal[7]; }point_t; point_t points[M]; // [0]=xActual, [1]=xPredicted from directPredecessor, [2]=xPredicted from localMean /* *file handling* */ char * mkFileName( char* buffer, size_t max_len, int suffixId ); char *fileSuffix( int id ); void myLogger( FILE* fp, point_t points[]); size_t getline( char **lineptr, size_t *n, FILE *stream ); //redundant under POSIX supporting OS void mkSvgGraph( point_t points[]); /* *rand seed* */ double r2( void ); double rndm( void ); /* *math* */ double sum_array( double x[], int length ); void directPredecessor( void ); void localMean( void ); int main(int argc, char **argv ) { char fileName[50]; int i; srand( (unsigned int) time(NULL) ); for (i = 0; i < M; i++) { _x[i] += ((255.0 / M) * i); // Init test values for (int k = 0; k < M; k++){ w[k][i] = rndm(); // Init weights } } mkFileName( fileName, sizeof(fileName), PURE_WEIGHTS); // save plain test_array before math magic happens FILE *fp0 = fopen(fileName,"w"); for (i = 0; i <= tracking; i++){ for ( int k = 0; k < tracking; k++ ){ fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]); } } fclose(fp0); // math magic localMean(); directPredecessor(); // TODO: used_weights.txt has gone missing! // save test_array after math magic happened // memset( fileName, '\0', sizeof(fileName) ); mkFileName( fileName, sizeof(fileName), USED_WEIGHTS); FILE *fp1 = fopen(fileName,"w"); for (i = 0; i < tracking; i++) { for (int k = 0; k < tracking; k++) { fprintf(fp1, "[%d][%d] %lf\n", k,i, w[k][i]); } } fclose(fp1); // getchar(); printf("DONE!"); } /* ======================================================================================= localMean Variant (1/3), substract local mean. ======================================================================================= */ void localMean( void ) { char fileName[50]; double xError[M]; // includes e(n) memset(xError, 0, M);// initialize xError-array with Zero int xCount = 0; // runtime var int i; mkFileName(fileName, sizeof(fileName), LOCAL_MEAN ); FILE* fp4 = fopen(fileName, "w"); fprintf(fp4, "\n\n\n\n*********************LocalMean*********************\n"); for (xCount = 1; xCount < M; xCount++){ //double xPartArray[xCount]; //includes all values at the size of runtime var double xMean = ( xCount > 0 ) ? ( sum_array(_x, xCount) / xCount ) : 0;// xCount can not be zero double xPredicted = 0.0; double xActual = _x[xCount + 1]; for ( i = 1; i < xCount; i++ ){ //get predicted value xPredicted += ( w[i][xCount] * ( _x[xCount - i] - xMean )) ; } xPredicted += xMean; xError [xCount] = xActual - xPredicted; points[xCount].xVal[2] = xCount; points[xCount].yVal[2] = xPredicted; double xSquared = 0.0; for ( i = 1; i < xCount; i++ ){ //get x squared xSquared =+ pow(_x[xCount-i],2); } for ( i - 1; i < xCount; i++ ){ //update weights w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared); } fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); } int xErrorLength = sizeof(xError) / sizeof(xError[0]); double mean = sum_array(xError, xErrorLength) / M; double deviation = 0.0; // Mean square for( i = 0; i < M - 1; i++ ){ deviation += pow( xError[i], 2 ); } deviation /= xErrorLength; // write in file mkFileName( fileName, sizeof(fileName), RESULTS ); FILE *fp2 = fopen(fileName, "w"); fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean); fclose(fp2); fclose(fp4); } /* =================================== directPredecessor Variant (2/3), substract direct predecessor =================================== */ void directPredecessor( void ) { char fileName[50]; double xError [M]; int xCount = 0, i; double xActual; // File handling mkFileName( fileName, sizeof(fileName), DIRECT_PREDECESSOR); FILE *fp3 = fopen(fileName, "w"); fprintf(fp3, "\n\n\n\n*********************DirectPredecessor*********************\n"); for ( xCount = 1; xCount < M+1; xCount++ ){ xActual = _x[xCount+1]; double xPredicted = 0.0; for ( i = 1; i < xCount; i++ ){ xPredicted += ( w[i][xCount] * ( _x[xCount - i] - _x[xCount - i - 1] )); } xPredicted += _x[xCount-1]; xError[xCount] = xActual - xPredicted; fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); points[xCount].xVal[0] = xCount; points[xCount].yVal[0] = xActual; points[xCount].xVal[1] = xCount; points[xCount].yVal[1] = xPredicted; double xSquared = 0.0; for ( i = 1; i < xCount; i++ ){ xSquared += pow( _x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor } for ( i = 1; i < xCount; i++){ w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * ( ( _x[xCount - i] - _x[xCount - i - 1] ) / xSquared ); //TODO: double val out of bounds } } int xErrorLength = sizeof(xError) / sizeof(xError[0]); double mean = sum_array(xError, xErrorLength) / xErrorLength; double deviation = 0.0; for ( i = 0; i < xErrorLength -1; i++ ){ deviation += pow( xError[i] - mean, 2); } mkSvgGraph( points); fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fclose(fp3); } /* ========================================================================= mkFileName Writes the current date plus the suffix with index suffixId into the given buffer. If[M ?K the total length is longer than max_len, only max_len characters will be written. ========================================================================= */ char *mkFileName( char* buffer, size_t max_len, int suffixId) { const char * format_str = "%Y-%m-%d_%H_%M_%S"; size_t date_len; const char * suffix = fileSuffix( suffixId ); time_t now = time(NULL); strftime( buffer, max_len, format_str, localtime(&now) ); date_len = strlen(buffer); strncat( buffer, suffix, max_len - date_len ); } /* ========================================================================= fileSuffix Contains and returns every suffix for all existing filenames ========================================================================== */ char * fileSuffix( int id ) { char * suffix[] = {"_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt"}; return suffix[id]; } /* ========================================================================== svgGraph ========================================================================== */ /* void Graph ( ) { char fileName[50]; mkFileName(fileName, sizeof(fileName), GRAPH); FILE* fp4 = fopen(fileName, "w"); pfrintf */ /* ========================================================================== myLogger Logs on filepointer, used for svg graphing ========================================================================== */ void myLogger ( FILE* fp, point_t points[] ){ int i; for( i = 0; i <= M; i++ ){ fprintf( fp, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); } fprintf(fp, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.8px\"/>\n\n (size - 1)) { size = size + 128; bufptr = realloc(bufptr, size); if (bufptr == NULL) { return -1; } } *p++ = c; if (c == '\n') { break; } c = fgetc(stream); } *p++ = '\0'; *lineptr = bufptr; *n = size; return p - bufptr - 1; } /* ========================================================================== mkSvgGraph parses template.svg and writes results in said template ========================================================================== */ void mkSvgGraph( point_t points[] ) { FILE *input = fopen ( "template.svg", "r" ); FILE *target = fopen ( "output.svg", "w" ); char *line = NULL; // char *ptr; size_t len = 0; ssize_t read; char values[64]; char firstGraph[15] = {"