# 1. CPP-NLMS-Testreihe ## 1.1 Veränderung der Lernrate #### Paramter: - Input: 500.000 Pixel (-n 500000) - WindowSize: 5 (Standart Value) - Lernrate von 0.1 bis 1.0 (increased by 0.1) - -i cathedral.ppm - random seed generator : 3 (-s 3) ### 1. Local Mean Lernrate | meanerror | variance --- | --- | --- 0.1 | 0.020861| 373.760784 0.2 | -0.015231| 1261.386282 0.3 | -0.054507| 2574.244199 0.4 | -0.088173| 4229.104809 0.5 | -0.116079 | 6169.762185 0.6 | -0.139313 | 8360.777760 0.7 | -0.158889 | 10783.351638 0.8 | -0.175600 | 13432.957565 0.9 | -0.190101 | 16318.529330 1.0 | -0.202958 | 19463.062580 ### 2. direct Predecessor Lernrate | meanerror | devitation --- | --- | --- 0.1 | 0.024560 | 608.448633 0.2 | -0.030306 | 2007.513911 0.3 | -0.084634 | 3959.201147 0.4 | -0.126798 | 6328.009325 0.5 | -0.157719 | 9057.241991 0.6 | -0.179736 | 12137.852301 0.7 | -0.194805 | 15592.808948 0.8 | -0.204488 | 19471.279015 0.9 | -0.210085 | 23849.267714 1.0 | -0.212681 | 28835.466521 ### 3. differential Predecessor Lernrate | meanerror | devitation --- | --- | --- 0.1 | 0.046246 | 237.604268 0.2 | 0.058362 | 838.182243 0.3 | 0.060553 | 1834.829054 0.4 | 0.060390 | 3227.671286 0.5 | 0.060858 | 5016.829374 0.6 | 0.063120 | 7202.687465 0.7 | 0.067694 | 9785.843689 0.8 | 0.074840 | 12767.049840 0.9 | 0.084710 | 16147.248088 1.0 | 0.097443 | 19927.694764 ### 4. NLMS Lernrate | meanerror | devitation --- | --- | --- 0.1 | -0.865235 | 51.897994 0.2 | -0.916315 | 67.761425 0.3 | -0.950006 | 82.291526 0.4 | -0.975096 | 96.554001 0.5 | -0.995089 | 111.236008 0.6 | -1.011618 | 126.820482 0.7 | -1.025538 | 143.713619 0.8 | -1.037385 | 162.334219 0.9 | -1.047550 | 183.192878 1.0 | -1.056358 | 206.993456 ## 1.2 Veränderung der WindowSize #### Paramter: - Input: 500.000 Pixel (-n 500000) - WindowSize: -w {1,3,5, 8, 10, 15, 20, 25, 50, 100} - Lernrate: -l 0.6 - -i cathedral.ppm - random seed generator : 3 (-s 3) >Tabelle beinhaltet jeweils den 'mean error' der jeweiligen Variante | Windowsize | local Mean | direct Predecessor | differential Predecessor | NLMS | |---|---|---|---|---| | 1 | 0.330125 | 0.330131 | 0.330131 | -1.063652 | | 3 | 0.444605 | 0.412069 | 0.413190 | -1.089547 | | 5 | -0.139313 | -0.179736 | 0.063120 | -1.011618 | | 8 | 0.181180 | 0.042986 | 0.221078 | -0.873373 | | 10 | 0.279242 | 0.188497 | 0.291145 | -0.811906 | | 15 | 0.215564 | 0.222018 | 0.265400 | -0.696719 | | 20 | 0.273161 | 0.383155 | 0.194116 | -0.615447 | | 25 | 0.213731 | 0.276315 | 0.185892 | -0.576340 | | 50 | 0.467920 | 0.463972 | 0.188099 | -0.479407 | | 100 | -0.331102 | -0.412149 | -0.018204 | -0.506369 | ___ # 2. CS-NLMS-Testreihe #### Parameter: -N:4000 Pixel -M: 5 -Learnrate: 0.1 bis 1.0 (increased by 0.1) -Image: boats.y.png --> Gewichte sind random, daher nicht reproduzierbar! ### 1. local mean Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | -0,0223811013862385| 5337,82462718957 0.2 | -0,0622259728578006| 7363,56898611733 0.3 | -0,0298976210637875| 9614,92806843726 0.4 | 0,0849844894447272| 12088,2433018213 0.5 | 0,299055989866592| 14819,6805234785 0.6 | 0,585283074155977| 17874,0914703503 0.7 | 0,979106442634296| 21337,9978781998 0.8 | 1,46391408202542| 25322,8680485397 0.9 | 2,05872807071837| 29964,9719994441 1,0 | 2,79656379441662| 35436,9340804565 ### 2. direct predecessor Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | 0,151005103097187| 5471,5876773699 0.2 | 0,606943328690361| 7729,18121268243 0.3 | 1,14390553779214| 10465,2060324616 0.4 | 1,76810718228813| 13695,8876087231 0.5 | 2,5193083296817| 17431,0433982945 0.6 | 3,38144695588288| 21696,5188824818 0.7 | 4,36367842697108| 26566,2513099756 0.8 | 5,51257464442153| 32193,8755290981 0.9 | 6,83374986915135| 38850,115776936 1.0 | 8,38129514988831| 46958,0983013679 ### 3. differential predecessor Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | -0,0160622191672049| 4750,33040669542 0.2 | 0,00640864710641419| 6041,46065665648 0.3 | 0,0432263456982662| 7412,09833871273 0.4 | 0,106075295986603| 8891,97578539296 0.5 | 0,174689052473554| 10532,273473301 0.6 | 0,241331954473674| 12394,8177286223 0.7 | 0,359973579958283| 14552,6708886431 0.8 | 0,494261683495002| 17102,3682973733 0.9 | 0,671346960651145 | 20166,0023256068 1.0 | 0,892045554010017| 23907,2852270274