# 1. CPP-NLMS-Testreihe #### Paramter: - Input: 500.000 Pixel (-n 500000) - WindowSize: 5 (Standart Value) - Lernrate von 0.1 bis 1.0 (increased by 0.1) - -i cathedral.ppm - random seed generator : 3 (-s 3) ### 1. Local Mean Lernrate | meanerror | devitation --- | --- | --- 0.1 | 0.017622| 264.808714 0.2 | 0.035715| 563.756509 0.3 | 0.054145| 1058.390726 0.4 | 0.072960| 1749.137624 0.5 | 0.092207| 2636.592222 0.6 | 0.111931| 3721.514220 0.7 | 0.132180| 5004.829359 0.8 | 0.153002| 6487.641093 0.9 | 0.174440| 8171.260237 1.0 | 0.196529| 10057.264574 ### 2. direct Predecessor Lernrate | meanerror | devitation --- | --- | --- 0.1 | 0.034605| 1165.639836 0.2 | 0.061290| 5143.795751 0.3 | 0.081941| 14101.954880 0.4 | 0.098059| 33151.61923 0.5 | 0.111109| 73575.962146 0.6 | 0.123070| 159449.145873 0.7 | 0.138492| 347221.927325 0.8 | 519.742508| 8159987385389.823242 0.9 | -7547134082896249132941312.000000| 3877153348329978955993364733716443880442465820831329026048.000000 1.0 | 3761239144093188417284117395383469067145028584884793393044299775046771047758036992.000000| 2074572983654522674987602010560539857768301297996124872466118751856211301657828168212459204392861396853691477732320683100737172969672730282637731961860360049654132492992512.000000 ### 3. differential Predecessor Lernrate | meanerror | devitation --- | --- | --- 0.1 | 0.002158| 35.172878 0.2 | 0.003306| 33.315664 0.3 | 0.003656| 32.549577 0.4 | 0.003311| 33.097449 0.5 | 0.002340| 35.717416 0.6 | 0.000869| 43.040214 0.7 | -0.000213| 71.249809 0.8 | 0.013732| 1363.663734 0.9 | -0.071016| 4623896.100036 1.0 | -211924.365595| 556770831730198528.000000 ___ # 2. CS-NLMS-Testreihe #### Parameter: -N:4000 Pixel -M: 5 -Learnrate: 0.1 bis 1.0 (increased by 0.1) -Image: boats.y.png --> Gewichte sind random, daher nicht reproduzierbar! ### 1. local mean Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | -0,0223811013862385| 5337,82462718957 0.2 | -0,0622259728578006| 7363,56898611733 0.3 | -0,0298976210637875| 9614,92806843726 0.4 | 0,0849844894447272| 12088,2433018213 0.5 | 0,299055989866592| 14819,6805234785 0.6 | 0,585283074155977| 17874,0914703503 0.7 | 0,979106442634296| 21337,9978781998 0.8 | 1,46391408202542| 25322,8680485397 0.9 | 2,05872807071837| 29964,9719994441 1,0 | 2,79656379441662| 35436,9340804565 ### 2. direct predecessor Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | 0,151005103097187| 5471,5876773699 0.2 | 0,606943328690361| 7729,18121268243 0.3 | 1,14390553779214| 10465,2060324616 0.4 | 1,76810718228813| 13695,8876087231 0.5 | 2,5193083296817| 17431,0433982945 0.6 | 3,38144695588288| 21696,5188824818 0.7 | 4,36367842697108| 26566,2513099756 0.8 | 5,51257464442153| 32193,8755290981 0.9 | 6,83374986915135| 38850,115776936 1.0 | 8,38129514988831| 46958,0983013679 ### 3. differential predecessor Lernrate | Average error | Variance of the error --- | --- | --- 0.1 | -0,0160622191672049| 4750,33040669542 0.2 | 0,00640864710641419| 6041,46065665648 0.3 | 0,0432263456982662| 7412,09833871273 0.4 | 0,106075295986603| 8891,97578539296 0.5 | 0,174689052473554| 10532,273473301 0.6 | 0,241331954473674| 12394,8177286223 0.7 | 0,359973579958283| 14552,6708886431 0.8 | 0,494261683495002| 17102,3682973733 0.9 | 0,671346960651145 | 20166,0023256068 1.0 | 0,892045554010017| 23907,2852270274