718 lines
20 KiB
C
718 lines
20 KiB
C
//
|
|
//
|
|
// NLMSvariants.c
|
|
//
|
|
// Created by FBRDNLMS on 26.04.18.
|
|
//
|
|
//
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <float.h> // DBL_MAX
|
|
|
|
#define NUMBER_OF_SAMPLES 1000
|
|
#define WINDOWSIZE 5
|
|
#define tracking 40 //Count of weights
|
|
#define learnrate 0.8
|
|
#define PURE_WEIGHTS 0
|
|
#define USED_WEIGHTS 1
|
|
#define RESULTS 3
|
|
#define DIRECT_PREDECESSOR 2
|
|
#define LOCAL_MEAN 4
|
|
#define TEST_VALUES 5
|
|
#define DIFFERENTIAL_PREDECESSOR 6
|
|
#define RGB_COLOR 255
|
|
#if defined(_MSC_VER)
|
|
#include <BaseTsd.h>
|
|
typedef SSIZE_T ssize_t;
|
|
#endif
|
|
|
|
//double x[] = { 0.0 };
|
|
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
|
|
double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
|
|
|
|
/* *svg graph building* */
|
|
typedef struct {
|
|
double xVal[7];
|
|
double yVal[7];
|
|
}point_t;
|
|
|
|
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
|
|
|
|
/* *ppm read, copy, write* */
|
|
typedef struct {
|
|
unsigned char red, green, blue;
|
|
}colorChannel_t;
|
|
|
|
typedef struct {
|
|
int x, y;
|
|
colorChannel_t *data;
|
|
}imagePixel_t;
|
|
|
|
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
|
|
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
|
|
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
|
|
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
|
|
|
|
/* *file handling* */
|
|
char * mkFileName(char* buffer, size_t max_len, int suffixId);
|
|
char *fileSuffix(int id);
|
|
void myLogger(FILE* fp, point_t points[]);
|
|
void mkSvgGraph(point_t points[]);
|
|
|
|
/* *rand seed* */
|
|
double r2(void);
|
|
double rndm(void);
|
|
|
|
/* *math* */
|
|
double sum_array(double x[], int length);
|
|
void directPredecessor(void);
|
|
void localMean(void);
|
|
void differentialPredecessor(void);
|
|
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
|
|
double windowXMean(int _arraylength, int xCount);
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
char fileName[50];
|
|
int i, k, xLength;
|
|
int *colorChannel;
|
|
imagePixel_t *image;
|
|
|
|
|
|
image = rdPPM("cow.ppm");
|
|
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
|
|
FILE* fp5 = fopen(fileName, "w");
|
|
xLength = ppmColorChannel(fp5, image);
|
|
printf("%d\n", xLength);
|
|
|
|
FILE* fp6 = fopen(fileName, "r");
|
|
colorSamples(fp6);
|
|
|
|
srand((unsigned int)time(NULL));
|
|
|
|
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
|
|
// _x[i] += ((255.0 / M) * i); // Init test values
|
|
for (int k = 0; k < WINDOWSIZE; k++) {
|
|
w[k][i] = rndm(); // Init weights
|
|
}
|
|
}
|
|
|
|
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
|
|
// save plain test_array before math magic happens
|
|
FILE *fp0 = fopen(fileName, "w");
|
|
for (i = 0; i <= tracking; i++) {
|
|
for (k = 0; k < WINDOWSIZE; k++) {
|
|
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
|
|
}
|
|
}
|
|
fclose(fp0);
|
|
|
|
|
|
// math magic
|
|
localMean();
|
|
//directPredecessor();
|
|
//differentialPredecessor();
|
|
// save test_array after math magic happened
|
|
// memset( fileName, '\0', sizeof(fileName) );
|
|
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
|
|
FILE *fp1 = fopen(fileName, "w");
|
|
for (i = 0; i < tracking; i++) {
|
|
for (int k = 0; k < WINDOWSIZE; k++) {
|
|
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
|
|
}
|
|
|
|
}
|
|
fclose(fp1);
|
|
|
|
// getchar();
|
|
printf("DONE!");
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
localMean
|
|
|
|
Variant (1/3), substract local mean.
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
void localMean(void) {
|
|
char fileName[50];
|
|
double xError[NUMBER_OF_SAMPLES]; // includes e(n)
|
|
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
|
|
int xCount = 0, i; // runtime var;
|
|
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
|
|
FILE* fp4 = fopen(fileName, "w");
|
|
fprintf(fp4, "\n=====================================LocalMean=====================================\n");
|
|
|
|
double xMean = xSamples[0];
|
|
double weightedSum = 0.0;
|
|
double filterOutput = 0.0;
|
|
double xSquared = 0.0;
|
|
double xPredicted = 0.0;
|
|
double xActual = 0.0;
|
|
|
|
|
|
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
|
//double xPartArray[1000]; //includes all values at the size of runtime var
|
|
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
|
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
|
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
|
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
|
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
|
|
xPredicted = 0.0;
|
|
xActual = xSamples[xCount + 1];
|
|
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
|
|
|
|
for (i = 1; i < _arrayLength; i++) { //get predicted value
|
|
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xMean));
|
|
|
|
}
|
|
xPredicted += xMean;
|
|
xError[xCount] = xActual - xPredicted;
|
|
printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
|
|
points[xCount].xVal[1] = xCount;
|
|
points[xCount].yVal[1] = xPredicted;
|
|
points[xCount].xVal[4] = xCount;
|
|
points[xCount].yVal[4] = xError[xCount];
|
|
|
|
xSquared = 0.0;
|
|
for (i = 1; i < _arrayLength; i++) { //get xSquared
|
|
//xSquared += pow(xSamples[xCount - i], 2);
|
|
xSquared += pow(xSamples[xCount - i] - xMean, 2);
|
|
printf("xSquared:%f\n", xSquared);
|
|
}
|
|
if (xSquared == 0.0) { // returns Pred: -1.#IND00
|
|
xSquared = 1.0;
|
|
}
|
|
//printf("%f\n", xSquared);
|
|
for (i = 1; i < _arrayLength; i++) { //update weights
|
|
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
|
|
}
|
|
|
|
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
|
|
|
}
|
|
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
|
printf("vor:%d", xErrorLength);
|
|
popNAN(xError, xErrorLength);
|
|
printf("nach:%d", xErrorLength);
|
|
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
|
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
|
double deviation = 0.0;
|
|
|
|
// Mean square
|
|
for (i = 0; i < xErrorLength - 1; i++) {
|
|
deviation += pow(xError[i] - mean, 2);
|
|
}
|
|
deviation /= xErrorLength;
|
|
|
|
|
|
// write in file
|
|
mkFileName(fileName, sizeof(fileName), RESULTS);
|
|
FILE *fp2 = fopen(fileName, "w");
|
|
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
|
|
fclose(fp2);
|
|
fclose(fp4);
|
|
}
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
directPredecessor
|
|
|
|
Variant (2/3),
|
|
substract direct predecessor
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
void directPredecessor(void) {
|
|
char fileName[512];
|
|
double xError[2048];
|
|
int xCount = 0, i;
|
|
double xActual;
|
|
int xPredicted = 0.0;
|
|
// File handling
|
|
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
|
|
FILE *fp3 = fopen(fileName, "w");
|
|
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
|
|
|
|
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
|
|
//double xPartArray[xCount]; //includes all values at the size of runtime var
|
|
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
|
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
|
printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
|
double xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
|
printf("%f\n", windowXMean(_arrayLength, xCount));
|
|
xPredicted = 0.0;
|
|
xActual = xSamples[xCount + 1];
|
|
|
|
for (i = 1; i < _arrayLength; i++) {
|
|
xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
|
}
|
|
xPredicted += xSamples[xCount - 1];
|
|
xError[xCount] = xActual - xPredicted;
|
|
|
|
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
|
points[xCount].xVal[2] = xCount;
|
|
points[xCount].yVal[2] = xPredicted;
|
|
points[xCount].xVal[5] = xCount;
|
|
points[xCount].yVal[5] = xError[xCount];
|
|
|
|
double xSquared = 0.0;
|
|
|
|
for (i = 1; i < _arrayLength; i++) {
|
|
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
|
}
|
|
for (i = 1; i < _arrayLength; i++) {
|
|
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
|
}
|
|
}
|
|
|
|
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
|
printf("vor:%d", xErrorLength);
|
|
popNAN(xError, xErrorLength);
|
|
printf("nach:%d", xErrorLength);
|
|
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
|
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
|
double deviation = 0.0;
|
|
|
|
for (i = 0; i < xErrorLength - 1; i++) {
|
|
deviation += pow(xError[i] - mean, 2);
|
|
}
|
|
deviation /= xErrorLength;
|
|
|
|
mkSvgGraph(points);
|
|
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
|
fclose(fp3);
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
differentialPredecessor
|
|
|
|
variant (3/3),
|
|
differenital predecessor.
|
|
|
|
======================================================================================================
|
|
*/
|
|
void differentialPredecessor(void) {
|
|
|
|
char fileName[512];
|
|
double xError[2048];
|
|
int xCount = 0, i;
|
|
double xActual;
|
|
|
|
// File handling
|
|
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
|
|
FILE *fp6 = fopen(fileName, "w");
|
|
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
|
|
|
|
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
|
|
xActual = xSamples[xCount + 1];
|
|
double xPredicted = 0.0;
|
|
|
|
for (i = 1; i < xCount; i++) {
|
|
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
|
}
|
|
xPredicted += xSamples[xCount - 1];
|
|
xError[xCount] = xActual - xPredicted;
|
|
|
|
fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
|
points[xCount].xVal[3] = xCount;
|
|
points[xCount].yVal[3] = xPredicted;
|
|
points[xCount].xVal[6] = xCount;
|
|
points[xCount].yVal[6] = xError[xCount];
|
|
double xSquared = 0.0;
|
|
|
|
for (i = 1; i < xCount; i++) {
|
|
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
|
}
|
|
for (i = 1; i < xCount; i++) {
|
|
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
|
}
|
|
}
|
|
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
|
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
|
double deviation = 0.0;
|
|
|
|
for (i = 0; i < xErrorLength - 1; i++) {
|
|
deviation += pow(xError[i] - mean, 2);
|
|
}
|
|
deviation /= xErrorLength;
|
|
|
|
mkSvgGraph(points);
|
|
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
|
fclose(fp6);
|
|
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
mkFileName
|
|
|
|
Writes the current date plus the suffix with index suffixId
|
|
into the given buffer. If the total length is longer than max_len,
|
|
only max_len characters will be written.
|
|
|
|
======================================================================================================
|
|
|
|
*/
|
|
|
|
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
|
|
const char * format_str = "%Y-%m-%d_%H_%M_%S";
|
|
size_t date_len;
|
|
const char * suffix = fileSuffix(suffixId);
|
|
time_t now = time(NULL);
|
|
|
|
strftime(buffer, max_len, format_str, localtime(&now));
|
|
date_len = strlen(buffer);
|
|
strncat(buffer, suffix, max_len - date_len);
|
|
return buffer;
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
fileSuffix
|
|
|
|
Contains and returns every suffix for all existing filenames
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
char * fileSuffix(int id) {
|
|
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
|
|
return suffix[id];
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
myLogger
|
|
|
|
Logs x,y points to svg graph
|
|
|
|
======================================================================================================
|
|
*/
|
|
void bufferLogger(char *buffer, point_t points[]) {
|
|
int i;
|
|
char _buffer[512] = "";
|
|
|
|
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
|
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
|
|
strcat(buffer, _buffer);
|
|
}
|
|
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
|
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
|
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
|
|
strcat(buffer, _buffer);
|
|
}
|
|
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
|
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
|
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
|
|
strcat(buffer, _buffer);
|
|
}
|
|
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
|
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
|
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
|
|
strcat(buffer, _buffer);
|
|
}
|
|
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n");
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
sum_array
|
|
|
|
Sum of all elements in x within a defined length
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
double sum_array(double x[], int xlength) {
|
|
int i = 0;
|
|
double sum = 0.0;
|
|
|
|
if (xlength != 0) {
|
|
for (i = 0; i < xlength; i++) {
|
|
sum += x[i];
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
popNanLength
|
|
|
|
returns length of new array without NAN values
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
double *popNAN(double *xError, int xErrorLength) {
|
|
int i, counter;
|
|
double noNAN[10];
|
|
realloc(noNAN, xErrorLength);
|
|
|
|
for (i = 0; i < xErrorLength; i++) {
|
|
if (!isnan(xError[i])) {
|
|
noNAN[i] = xError[i];
|
|
counter++;
|
|
}
|
|
}
|
|
realloc(noNAN, counter * sizeof(double));
|
|
int noNANLength = sizeof(noNAN) / sizeof(noNAN[0]);
|
|
memcpy(xError, noNAN, noNANLength);
|
|
return xError;
|
|
|
|
}
|
|
/*
|
|
======================================================================================================
|
|
|
|
r2
|
|
|
|
returns a random double value between 0 and 1
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
double r2(void) {
|
|
return((rand() % 10000) / 10000.0);
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
rndm
|
|
|
|
fills a double variable with random value and returns it
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
double rndm(void) {
|
|
double rndmval = r2();
|
|
return rndmval;
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
mkSvgGraph
|
|
|
|
parses template.svg and writes results in said template
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
void mkSvgGraph(point_t points[]) {
|
|
FILE *input = fopen("template.svg", "r");
|
|
FILE *target = fopen("output.svg", "w");
|
|
char line[512];
|
|
char firstGraph[15] = { "<path d=\"M0 0" };
|
|
|
|
if (input == NULL) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
char buffer[131072] = "";
|
|
|
|
memset(buffer, '\0', sizeof(buffer));
|
|
while (!feof(input)) {
|
|
fgets(line, 512, input);
|
|
strncat(buffer, line, strlen(line));
|
|
// printf("%s\n", line);
|
|
if (strstr(line, firstGraph) != NULL) {
|
|
bufferLogger(buffer, points);
|
|
}
|
|
|
|
}
|
|
fprintf(target, buffer);
|
|
//puts(buffer);
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
rdPPM
|
|
|
|
reads data from file of type PPM, stores colorchannels in a struct in the
|
|
size of given picture
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
static imagePixel_t *rdPPM(char *fileName) {
|
|
char buffer[16];
|
|
imagePixel_t *image;
|
|
int c, rgbColor;
|
|
|
|
FILE *fp = fopen(fileName, "rb");
|
|
if (!fp) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (!fgets(buffer, sizeof(buffer), fp)) {
|
|
perror(fileName);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (buffer[0] != 'P' || buffer[1] != '6') {
|
|
fprintf(stderr, "No PPM file format\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
|
|
if (!image) {
|
|
fprintf(stderr, "malloc() failed");
|
|
}
|
|
c = getc(fp);
|
|
while (c == '#') {
|
|
while (getc(fp) != '\n');
|
|
c = getc(fp);
|
|
}
|
|
ungetc(c, fp);
|
|
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
|
|
fprintf(stderr, "Invalid image size in %s\n", fileName);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (fscanf(fp, "%d", &rgbColor) != 1) {
|
|
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
|
|
}
|
|
if (rgbColor != RGB_COLOR) {
|
|
fprintf(stderr, "Invalid image color range in %s\n", fileName);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
while (fgetc(fp) != '\n');
|
|
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
|
|
if (!image) {
|
|
fprintf(stderr, "malloc() failed");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
|
|
fprintf(stderr, "Loading image failed");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fclose(fp);
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
mkPpmFile
|
|
|
|
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
|
|
carbon copy of the source image. Build for debugging
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
void mkPpmFile(char *fileName, imagePixel_t *image) {
|
|
FILE* fp = fopen(fileName, "wb");
|
|
if (!fp) {
|
|
fprintf(stderr, "Opening file failed.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fprintf(fp, "P6\n");
|
|
fprintf(fp, "%d %d\n", image->x, image->y);
|
|
fprintf(fp, "%d\n", RGB_COLOR);
|
|
fwrite(image->data, 3 * image->x, image->y, fp);
|
|
fclose(fp);
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
ppmColorChannel
|
|
|
|
gets one of the rgb color channels and writes them to a file
|
|
|
|
======================================================================================================
|
|
*/
|
|
|
|
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
|
|
// int length = 1000; // (image->x * image->y) / 3;
|
|
int i = 0;
|
|
|
|
if (image) {
|
|
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
|
|
fprintf(fp, "%d\n", image->data[i].green);
|
|
}
|
|
}
|
|
fclose(fp);
|
|
return NUMBER_OF_SAMPLES;
|
|
}
|
|
|
|
|
|
/*
|
|
======================================================================================================
|
|
|
|
colorSamples
|
|
|
|
reads colorChannel values from file and stores them in xSamples as well as points datatype for
|
|
creating the SVG graph
|
|
|
|
======================================================================================================
|
|
*/
|
|
void colorSamples(FILE* fp) {
|
|
int i = 0;
|
|
int d, out;
|
|
double f;
|
|
char buffer[NUMBER_OF_SAMPLES];
|
|
|
|
while (!feof(fp)) {
|
|
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
|
|
sscanf(buffer, "%lf", &xSamples[i]);
|
|
//printf("%lf\n", xSamples[i] );
|
|
points[i].yVal[0] = xSamples[i];
|
|
points[i].xVal[0] = i;
|
|
++i;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
double windowXMean(int _arraylength, int xCount) {
|
|
int count;
|
|
double sum = 0.0;
|
|
double *ptr;
|
|
// printf("*window\t\t*base\t\txMean\n\n");
|
|
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
|
|
//window = xCount - _arraylength
|
|
//base = window - _arraylength;
|
|
//sum = 0.0;
|
|
//for( count = 0; count < _arraylength; count++){
|
|
sum += *ptr;
|
|
// printf("%f\n", *base);
|
|
|
|
//}
|
|
}
|
|
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
|
|
return sum / (double)_arraylength;
|
|
}
|