1. CPP-NLMS-Testreihe
1.1 Veränderung der Lernrate
Paramter:
- Input: 500.000 Pixel (-n 500000)
- WindowSize: 5 (Standart Value)
- Lernrate von 0.1 bis 1.0 (increased by 0.1)
- -i cathedral.ppm
- random seed generator : 3 (-s 3)
1. Local Mean
Lernrate |
meanerror |
variance |
0.1 |
0.020861 |
373.760784 |
0.2 |
-0.015231 |
1261.386282 |
0.3 |
-0.054507 |
2574.244199 |
0.4 |
-0.088173 |
4229.104809 |
0.5 |
-0.116079 |
6169.762185 |
0.6 |
-0.139313 |
8360.777760 |
0.7 |
-0.158889 |
10783.351638 |
0.8 |
-0.175600 |
13432.957565 |
0.9 |
-0.190101 |
16318.529330 |
1.0 |
-0.202958 |
19463.062580 |
2. direct Predecessor
Lernrate |
meanerror |
devitation |
0.1 |
0.024560 |
608.448633 |
0.2 |
-0.030306 |
2007.513911 |
0.3 |
-0.084634 |
3959.201147 |
0.4 |
-0.126798 |
6328.009325 |
0.5 |
-0.157719 |
9057.241991 |
0.6 |
-0.179736 |
12137.852301 |
0.7 |
-0.194805 |
15592.808948 |
0.8 |
-0.204488 |
19471.279015 |
0.9 |
-0.210085 |
23849.267714 |
1.0 |
-0.212681 |
28835.466521 |
3. differential Predecessor
Lernrate |
meanerror |
devitation |
0.1 |
0.046246 |
237.604268 |
0.2 |
0.058362 |
838.182243 |
0.3 |
0.060553 |
1834.829054 |
0.4 |
0.060390 |
3227.671286 |
0.5 |
0.060858 |
5016.829374 |
0.6 |
0.063120 |
7202.687465 |
0.7 |
0.067694 |
9785.843689 |
0.8 |
0.074840 |
12767.049840 |
0.9 |
0.084710 |
16147.248088 |
1.0 |
0.097443 |
19927.694764 |
4. NLMS
Lernrate |
meanerror |
devitation |
0.1 |
-0.865235 |
51.897994 |
0.2 |
-0.916315 |
67.761425 |
0.3 |
-0.950006 |
82.291526 |
0.4 |
-0.975096 |
96.554001 |
0.5 |
-0.995089 |
111.236008 |
0.6 |
-1.011618 |
126.820482 |
0.7 |
-1.025538 |
143.713619 |
0.8 |
-1.037385 |
162.334219 |
0.9 |
-1.047550 |
183.192878 |
1.0 |
-1.056358 |
206.993456 |
1.2 Veränderung der WindowSize
Paramter:
- Input: 500.000 Pixel (-n 500000)
- WindowSize: -w {1,3,5, 8, 10, 15, 20, 25, 50, 100}
- Lernrate: -l 0.6
- -i cathedral.ppm
- random seed generator : 3 (-s 3)
Tabelle beinhaltet jeweils den 'mean error' der jeweiligen Variante
Windowsize |
local Mean |
direct Predecessor |
differential Predecessor |
NLMS |
1 |
0.330125 |
0.330131 |
0.330131 |
-1.063652 |
3 |
0.444605 |
0.412069 |
0.413190 |
-1.089547 |
5 |
-0.139313 |
-0.179736 |
0.063120 |
-1.011618 |
8 |
0.181180 |
0.042986 |
0.221078 |
-0.873373 |
10 |
0.279242 |
0.188497 |
0.291145 |
-0.811906 |
15 |
0.215564 |
0.222018 |
0.265400 |
-0.696719 |
20 |
0.273161 |
0.383155 |
0.194116 |
-0.615447 |
25 |
0.213731 |
0.276315 |
0.185892 |
-0.576340 |
50 |
0.467920 |
0.463972 |
0.188099 |
-0.479407 |
100 |
-0.331102 |
-0.412149 |
-0.018204 |
-0.506369 |
2. CS-NLMS-Testreihe
Parameter:
-N:4000 Pixel
-M: 5
-Learnrate: 0.1 bis 1.0 (increased by 0.1)
-Image: boats.y.png
--> Gewichte sind random, daher nicht reproduzierbar!
1. local mean
Lernrate |
Average error |
Variance of the error |
0.1 |
-0,0223811013862385 |
5337,82462718957 |
0.2 |
-0,0622259728578006 |
7363,56898611733 |
0.3 |
-0,0298976210637875 |
9614,92806843726 |
0.4 |
0,0849844894447272 |
12088,2433018213 |
0.5 |
0,299055989866592 |
14819,6805234785 |
0.6 |
0,585283074155977 |
17874,0914703503 |
0.7 |
0,979106442634296 |
21337,9978781998 |
0.8 |
1,46391408202542 |
25322,8680485397 |
0.9 |
2,05872807071837 |
29964,9719994441 |
1,0 |
2,79656379441662 |
35436,9340804565 |
2. direct predecessor
Lernrate |
Average error |
Variance of the error |
0.1 |
0,151005103097187 |
5471,5876773699 |
0.2 |
0,606943328690361 |
7729,18121268243 |
0.3 |
1,14390553779214 |
10465,2060324616 |
0.4 |
1,76810718228813 |
13695,8876087231 |
0.5 |
2,5193083296817 |
17431,0433982945 |
0.6 |
3,38144695588288 |
21696,5188824818 |
0.7 |
4,36367842697108 |
26566,2513099756 |
0.8 |
5,51257464442153 |
32193,8755290981 |
0.9 |
6,83374986915135 |
38850,115776936 |
1.0 |
8,38129514988831 |
46958,0983013679 |
3. differential predecessor
Lernrate |
Average error |
Variance of the error |
0.1 |
-0,0160622191672049 |
4750,33040669542 |
0.2 |
0,00640864710641419 |
6041,46065665648 |
0.3 |
0,0432263456982662 |
7412,09833871273 |
0.4 |
0,106075295986603 |
8891,97578539296 |
0.5 |
0,174689052473554 |
10532,273473301 |
0.6 |
0,241331954473674 |
12394,8177286223 |
0.7 |
0,359973579958283 |
14552,6708886431 |
0.8 |
0,494261683495002 |
17102,3682973733 |
0.9 |
0,671346960651145 |
20166,0023256068 |
1.0 |
0,892045554010017 |
23907,2852270274 |