NLMSvariants/doc/Messprotokoll.md

4.4 KiB

1. CPP-NLMS-Testreihe

1.1 Veränderung der Lernrate

Paramter:

			- Input: 500.000 Pixel (-n 500000)
			- WindowSize: 5 (Standart Value)
			- Lernrate von 0.1 bis 1.0 (increased by 0.1)
			- -i cathedral.ppm 
			- random seed generator : 3 (-s 3)

1. Local Mean

Lernrate meanerror variance
0.1 0.020861 373.760784
0.2 -0.015231 1261.386282
0.3 -0.054507 2574.244199
0.4 -0.088173 4229.104809
0.5 -0.116079 6169.762185
0.6 -0.139313 8360.777760
0.7 -0.158889 10783.351638
0.8 -0.175600 13432.957565
0.9 -0.190101 16318.529330
1.0 -0.202958 19463.062580

2. direct Predecessor

Lernrate meanerror devitation
0.1 0.024560 608.448633
0.2 -0.030306 2007.513911
0.3 -0.084634 3959.201147
0.4 -0.126798 6328.009325
0.5 -0.157719 9057.241991
0.6 -0.179736 12137.852301
0.7 -0.194805 15592.808948
0.8 -0.204488 19471.279015
0.9 -0.210085 23849.267714
1.0 -0.212681 28835.466521

3. differential Predecessor

Lernrate meanerror devitation
0.1 0.046246 237.604268
0.2 0.058362 838.182243
0.3 0.060553 1834.829054
0.4 0.060390 3227.671286
0.5 0.060858 5016.829374
0.6 0.063120 7202.687465
0.7 0.067694 9785.843689
0.8 0.074840 12767.049840
0.9 0.084710 16147.248088
1.0 0.097443 19927.694764

4. NLMS

Lernrate meanerror devitation
0.1 -0.865235 51.897994
0.2 -0.916315 67.761425
0.3 -0.950006 82.291526
0.4 -0.975096 96.554001
0.5 -0.995089 111.236008
0.6 -1.011618 126.820482
0.7 -1.025538 143.713619
0.8 -1.037385 162.334219
0.9 -1.047550 183.192878
1.0 -1.056358 206.993456

1.2 Veränderung der WindowSize

Paramter:

			- Input: 500.000 Pixel (-n 500000)
			- WindowSize: -w {1,3,5, 8, 10, 15, 20, 25, 50, 100}
			- Lernrate: -l 0.6
			- -i cathedral.ppm 
			- random seed generator : 3 (-s 3)

Tabelle beinhaltet jeweils den 'mean error' der jeweiligen Variante

Windowsize local Mean direct Predecessor differential Predecessor NLMS
1 0.330125 0.330131 0.330131 -1.063652
3 0.444605 0.412069 0.413190 -1.089547
5 -0.139313 -0.179736 0.063120 -1.011618
8 0.181180 0.042986 0.221078 -0.873373
10 0.279242 0.188497 0.291145 -0.811906
15 0.215564 0.222018 0.265400 -0.696719
20 0.273161 0.383155 0.194116 -0.615447
25 0.213731 0.276315 0.185892 -0.576340
50 0.467920 0.463972 0.188099 -0.479407
100 -0.331102 -0.412149 -0.018204 -0.506369

2. CS-NLMS-Testreihe

Parameter:

			-N:4000 Pixel
			-M: 5
			-Learnrate: 0.1 bis 1.0 (increased by 0.1)
			-Image: boats.y.png
			--> Gewichte sind random, daher nicht reproduzierbar!

1. local mean

Lernrate Average error Variance of the error
0.1 -0,0223811013862385 5337,82462718957
0.2 -0,0622259728578006 7363,56898611733
0.3 -0,0298976210637875 9614,92806843726
0.4 0,0849844894447272 12088,2433018213
0.5 0,299055989866592 14819,6805234785
0.6 0,585283074155977 17874,0914703503
0.7 0,979106442634296 21337,9978781998
0.8 1,46391408202542 25322,8680485397
0.9 2,05872807071837 29964,9719994441
1,0 2,79656379441662 35436,9340804565

2. direct predecessor

Lernrate Average error Variance of the error
0.1 0,151005103097187 5471,5876773699
0.2 0,606943328690361 7729,18121268243
0.3 1,14390553779214 10465,2060324616
0.4 1,76810718228813 13695,8876087231
0.5 2,5193083296817 17431,0433982945
0.6 3,38144695588288 21696,5188824818
0.7 4,36367842697108 26566,2513099756
0.8 5,51257464442153 32193,8755290981
0.9 6,83374986915135 38850,115776936
1.0 8,38129514988831 46958,0983013679

3. differential predecessor

Lernrate Average error Variance of the error
0.1 -0,0160622191672049 4750,33040669542
0.2 0,00640864710641419 6041,46065665648
0.3 0,0432263456982662 7412,09833871273
0.4 0,106075295986603 8891,97578539296
0.5 0,174689052473554 10532,273473301
0.6 0,241331954473674 12394,8177286223
0.7 0,359973579958283 14552,6708886431
0.8 0,494261683495002 17102,3682973733
0.9 0,671346960651145 20166,0023256068
1.0 0,892045554010017 23907,2852270274