NLMSvariants/bin/NLMS_ANSI_C.c

305 lines
6.0 KiB
C
Raw Normal View History

2018-04-26 16:39:47 +02:00
//
// main.c
// NLMS
//
// Created by FBRDNLMS on 26.04.18.
// Copyright © 2018 FBRDNLMS. All rights reserved.
2018-04-26 16:39:47 +02:00
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#define M 1000
#define tracking 40 //Count of weights
2018-04-26 16:39:47 +02:00
//static Stack<double> x = new Stack<double>();
//static Random rnd = new Random();
//static double[] _x = new double[M];
//static double[,] w = new double[M, M];
#define learnrate 1.0
double x[] ={0};
double _x[M] = {0};
double w [M][M]={{0},{0}};
void fileName(char *name_suffix);
double r2(void);
double rnd(void);
2018-04-26 16:39:47 +02:00
double sum_array(double x[], int length);
void direkterVorgaenger(void);
void lokalerMittelWert(void);
int main(int argc, char **argv ) {
//init test_array, fill in weights by random
2018-04-26 16:39:47 +02:00
int i = 0;
for (i = 0; i < M; i++) {
_x[i] += ((255.0 / M) * i);
for (int k = 1; k < M; k++)
{
w[k][i] = rnd();
}
}
// save plain test_array before math magic happened
char weightsBefore [] = "_weights.txt";
fileName(&weightsBefore);
FILE *fp0 = fopen(weightsBefore,"wb+");
2018-04-26 16:39:47 +02:00
for (i = 0; i < tracking; i++){
for ( int k = 1; k < tracking; k++ ){
fprintf(fp0, "[%f][%f] %.2f\n", k, i, w[k][i]);
}
2018-04-26 16:39:47 +02:00
}
fclose(fp0);
// math magic
2018-04-26 16:39:47 +02:00
direkterVorgaenger();
// save test_array after math magic happened
char weightsAfter [] = "_weights_after.txt";
fileName(&weightsAfter);
FILE *fp1 = fopen(weightsAfter,"wb+");
2018-04-26 16:39:47 +02:00
for (i = 0; i < tracking; i++) {
for (int k = 1; k < tracking; k++) {
fprintf(fp1, "[%f][%f] %.2f\n", k,i, w[k][i]);
}
2018-04-26 16:39:47 +02:00
}
fclose(fp1);
2018-04-26 16:39:47 +02:00
getchar();
}
/*
===================================
lokalerMittelwert()
Variant (1/3),
substract local mean
===================================
*/
void lokalerMittelWert() {
double xError[M]; // includes e(n)
memset(xError, 0, M);// initialize xError-array with Zero
int xCount = 0; // runtime var
2018-04-26 16:39:47 +02:00
int i;
for (xCount = 1; xCount < M; xCount++){ // x_cout can not be zero
2018-04-26 16:39:47 +02:00
//double xPartArray[xCount]; //includes all values at the size of runtime var
double xMean = (xCount > 0) ? ( sum_array(_x, xCount) / xCount) : 0;
2018-04-26 16:39:47 +02:00
double xPredicted = 0.0;
double xActual = _x[xCount + 1];
for ( i = 1; i < xCount; i++ ){ //get predicted value
xPredicted += (w[i][xCount] * (_x[xCount - i] - xMean)) ;
}
xPredicted += xMean;
xError [xCount] = xActual - xPredicted;
double xSquared = 0.0;
for ( i = 1; i < xCount; i++ ){ //get x squared
xSquared =+ pow(_x[xCount-i],2);
2018-04-26 16:39:47 +02:00
}
for ( i - 1; i < xCount; i++ ){ //update weights
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared);
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / M;
double deviation = 0.0;
// Mean square
for( i = 0; i < M-1; i++ ){
deviation += pow( xError[i], 2 );
2018-04-26 16:39:47 +02:00
}
deviation /= xErrorLength;
// write in file
char results [] = "_results.txt";
fileName(&results);
FILE *fp2 = fopen(results, "wb+");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2);
2018-04-26 16:39:47 +02:00
}
/*
===================================
direkterVorgaenger()
Variant (2/3),
substract direct predecessor
===================================
*/
void direkterVorgaenger() {
double xError [M];
int xCount = 0, i;
// File handling
char direkterVorgaenger [] = "_direkterVorgaenger.txt";
fileName(&direkterVorgaenger);
FILE *fp3 = fopen(direkterVorgaenger, "wb+");
for ( xCount = 1; xCount < M; xCount++ ){
double xPredicted = 0.0;
double xActual = _x[xCount+1];
for ( i = 1; i < xCount; i++ ){
xPredicted += ( w[i][xCount] * ( _x[xCount - i] - _x[xCount - i - 1]));
}
xPredicted += _x[xCount-1];
xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
//get x squared
double xSquared = 0;
for ( i = 1; i < xCount; i++ ){
xSquared += pow( _x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor
}
for ( i = 1; x < xCount; i++){
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * ( ( _x[xCount - i - 1] ) / xSquared );
}
2018-04-26 16:39:47 +02:00
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for ( i = 0; i < xErrorLength -1; i++ ){
deviation += pow( xError[i] - mean, 2);
2018-04-26 16:39:47 +02:00
}
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3);
2018-04-26 16:39:47 +02:00
}
/*
===================================
fileName()
generates filename with date for
logging purposes
===================================
*/
void fileName(char *name_suffix){
2018-04-26 16:39:47 +02:00
//filename
char date[34];
//char name[13] = "_results.txt";
time_t now;
now = time(NULL);
strftime(date, 20, "%Y-%m-%d_%H_%M_%S", localtime(&now));
strcpy(date, *name_suffix);
2018-04-26 16:39:47 +02:00
//return &date[0];
return;
2018-04-26 16:39:47 +02:00
}
2018-04-26 16:39:47 +02:00
/*
===================================
sum_array
sum of all elements in x
within a defined length
===================================
2018-04-26 16:39:47 +02:00
*/
double sum_array(double x[], int length){
//int length = 0;
int i = 0;
2018-04-26 16:39:47 +02:00
double sum = 0.0;
//length = sizeof(x)/sizeof(x[0]);
for (i=0; i< length; i++){
sum += x[i];
}
return sum;
}
/*
===================================
r2()
returns a double value between
0 and 1
===================================
*/
double r2()
{
return((rand() % 10000) / 10000.0);
}
/*
===================================
int rnd()
fills a double variable with
random value and returns it
===================================
*/
double rnd()
{
double u;
u = r2();
return u;
}