NLMSvariants/bin/NLMSvariants.c

790 lines
24 KiB
C
Raw Normal View History

2018-04-26 16:39:47 +02:00
//
2018-05-11 11:30:17 +02:00
//
2018-05-02 09:44:53 +02:00
// NLMSvariants.c
2018-04-26 16:39:47 +02:00
//
// Created by FBRDNLMS on 26.04.18.
2018-05-11 11:30:17 +02:00
//
2018-04-26 16:39:47 +02:00
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
2018-04-26 16:39:47 +02:00
2018-05-13 21:41:44 +02:00
#define NUMBER_OF_SAMPLES 500
2018-05-11 11:30:17 +02:00
#define WINDOWSIZE 5
#define learnrate 0.8
2018-05-07 00:18:25 +02:00
#define RGB_COLOR 255
2018-05-07 15:36:46 +02:00
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
2018-05-07 15:49:17 +02:00
2018-05-14 19:25:53 +02:00
enum fileSuffix_t{ // used in conjunction with mkFileName()
PURE_WEIGHTS,
USED_WEIGHTS,
DIRECT_PREDECESSOR,
RESULTS,
LOCAL_MEAN,
TEST_VALUES,
DIFFERENTIAL_PREDECESSOR
};
2018-05-11 11:30:17 +02:00
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
2018-05-11 14:19:20 +02:00
2018-05-07 00:18:25 +02:00
/* *svg graph building* */
2018-05-07 15:36:46 +02:00
typedef struct {
2018-05-04 16:30:12 +02:00
double xVal[7];
double yVal[7];
}point_t;
2018-05-11 11:30:17 +02:00
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
2018-05-04 16:30:12 +02:00
2018-05-14 16:06:03 +02:00
/* *ppm read, copy, write* */
2018-05-07 00:18:25 +02:00
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
2018-05-07 15:36:46 +02:00
int x, y;
2018-05-07 00:18:25 +02:00
colorChannel_t *data;
}imagePixel_t;
2018-05-07 22:39:31 +02:00
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
2018-05-11 12:00:37 +02:00
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
2018-05-07 00:18:25 +02:00
2018-05-13 21:41:44 +02:00
/* *file handling* */
2018-05-07 15:36:46 +02:00
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]);
2018-05-13 21:41:44 +02:00
//void weightsLogger(double *weights, int var);
2018-05-04 01:28:36 +02:00
/* *rand seed* */
2018-05-07 15:36:46 +02:00
double r2(void);
double rndm(void);
2018-05-04 01:28:36 +02:00
/* *math* */
2018-05-07 15:36:46 +02:00
double sum_array(double x[], int length);
2018-05-13 21:41:44 +02:00
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
//void differentialPredecessor(double *weights);
double *popNAN(double *xError); //return new array without NAN values
2018-05-11 12:00:37 +02:00
double windowXMean(int _arraylength, int xCount);
2018-05-07 15:36:46 +02:00
2018-05-13 21:41:44 +02:00
//int main(int argc, char **argv) {
int main( void ) {
2018-05-14 16:06:03 +02:00
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
2018-05-13 21:41:44 +02:00
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
2018-05-07 15:36:46 +02:00
char fileName[50];
2018-05-14 13:54:56 +02:00
int i,k, xLength;
2018-05-07 17:10:43 +02:00
imagePixel_t *image;
2018-05-14 13:54:56 +02:00
image = rdPPM("cow.ppm");
2018-05-07 22:39:31 +02:00
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image);
2018-05-11 11:30:17 +02:00
printf("%d\n", xLength);
2018-05-07 22:39:31 +02:00
FILE* fp6 = fopen(fileName, "r");
2018-05-11 12:00:37 +02:00
colorSamples(fp6);
2018-05-07 15:36:46 +02:00
2018-05-14 18:59:05 +02:00
srand( (unsigned int)time(NULL) );
2018-05-11 11:30:17 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
2018-05-13 21:41:44 +02:00
weights[k][i] = rndm(); // Init weights
2018-05-07 15:36:46 +02:00
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
2018-05-14 18:59:05 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
2018-05-11 12:00:37 +02:00
for (k = 0; k < WINDOWSIZE; k++) {
2018-05-13 21:41:44 +02:00
fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
2018-05-07 15:36:46 +02:00
}
}
fclose(fp0);
// math magic
2018-05-14 16:06:03 +02:00
localMean(weights);
directPredecessor(weights);
2018-05-14 13:54:56 +02:00
differentialPredecessor(weights);
2018-05-11 14:19:20 +02:00
mkSvgGraph(points);
2018-05-11 12:00:37 +02:00
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
2018-05-13 21:41:44 +02:00
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
2018-05-07 15:36:46 +02:00
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
2018-05-11 11:30:17 +02:00
for (int k = 0; k < WINDOWSIZE; k++) {
2018-05-07 15:36:46 +02:00
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
2018-05-13 21:41:44 +02:00
*/
printf("\nDONE!\n");
2018-04-26 16:39:47 +02:00
}
2018-05-07 15:36:46 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
localMean
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
Variant (1/3), substract local mean.
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-14 13:54:56 +02:00
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
2018-05-13 21:41:44 +02:00
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double *local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
2018-05-07 15:36:46 +02:00
char fileName[50];
2018-05-11 14:19:20 +02:00
double xError[2048]; // includes e(n)
2018-05-11 11:30:17 +02:00
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var;
2018-05-07 15:36:46 +02:00
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
2018-05-14 16:06:03 +02:00
fprintf(fp4, "\n=====================================LocalMean=====================================\nNo.\txPredicted\txActual\t\txError\n");
2018-05-11 11:30:17 +02:00
2018-05-14 13:54:56 +02:00
double xMean = xSamples[0];
2018-05-11 12:00:37 +02:00
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
2018-05-14 13:54:56 +02:00
2018-05-11 11:30:17 +02:00
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
2018-05-14 19:31:50 +02:00
2018-05-13 21:41:44 +02:00
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
2018-05-11 12:00:37 +02:00
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
2018-05-11 11:30:17 +02:00
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
2018-05-11 12:00:37 +02:00
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
for (i = 1; i < _arrayLength; i++) { //get predicted value
2018-05-11 14:19:20 +02:00
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
2018-05-07 15:36:46 +02:00
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
2018-05-11 11:30:17 +02:00
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
2018-05-11 12:00:37 +02:00
xSquared = 0.0;
2018-05-11 11:30:17 +02:00
for (i = 1; i < _arrayLength; i++) { //get xSquared
xSquared += pow(xSamples[xCount - i] - xMean, 2);
2018-05-07 15:36:46 +02:00
}
2018-05-13 21:41:44 +02:00
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
2018-05-11 12:00:37 +02:00
xSquared = 1.0;
2018-05-11 11:30:17 +02:00
}
for (i = 1; i < _arrayLength; i++) { //update weights
2018-05-13 21:41:44 +02:00
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
2018-05-07 15:36:46 +02:00
}
2018-05-14 16:06:03 +02:00
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
2018-05-14 13:54:56 +02:00
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
2018-05-14 16:06:03 +02:00
xErrorPtr[0] = 0.0;
2018-05-13 21:41:44 +02:00
printf("Xerrorl:%lf", xErrorLength);
2018-05-14 16:06:03 +02:00
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
2018-05-07 15:36:46 +02:00
double deviation = 0.0;
// Mean square
2018-05-13 21:41:44 +02:00
for (i = 1; i < xErrorLength; i++) {
2018-05-11 11:30:17 +02:00
deviation += pow(xError[i] - mean, 2);
2018-05-07 15:36:46 +02:00
}
deviation /= xErrorLength;
2018-05-14 16:06:03 +02:00
printf("mean:%lf, devitation:%lf", mean, deviation);
2018-05-07 15:36:46 +02:00
// write in file
2018-05-14 18:59:05 +02:00
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "w");
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
2018-05-13 21:41:44 +02:00
free(local_weights);
2018-05-07 15:36:46 +02:00
fclose(fp4);
2018-05-14 13:54:56 +02:00
2018-05-14 18:59:05 +02:00
//weightsLogger( local_weights, USED_WEIGHTS );
2018-04-26 16:39:47 +02:00
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
directPredecessor
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
Variant (2/3),
substract direct predecessor
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-13 21:41:44 +02:00
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
2018-05-07 15:36:46 +02:00
char fileName[512];
double xError[2048];
int xCount = 0, i;
2018-05-11 14:19:20 +02:00
double xActual = 0.0;
2018-05-13 21:41:44 +02:00
double xPredicted = 0.0;
2018-05-07 15:36:46 +02:00
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
2018-05-14 16:06:03 +02:00
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
2018-05-11 11:30:17 +02:00
2018-05-11 14:19:20 +02:00
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
2018-05-11 12:00:37 +02:00
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
2018-05-11 11:30:17 +02:00
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
2018-05-11 14:19:20 +02:00
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
2018-05-11 11:30:17 +02:00
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
2018-05-11 14:19:20 +02:00
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
2018-05-11 11:30:17 +02:00
for (i = 1; i < _arrayLength; i++) {
2018-05-11 14:19:20 +02:00
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
2018-05-07 15:36:46 +02:00
}
2018-05-11 11:30:17 +02:00
xPredicted += xSamples[xCount - 1];
2018-05-07 15:36:46 +02:00
xError[xCount] = xActual - xPredicted;
2018-05-14 16:06:03 +02:00
//fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
2018-05-11 11:30:17 +02:00
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
2018-05-07 15:36:46 +02:00
double xSquared = 0.0;
2018-05-11 11:30:17 +02:00
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
2018-05-07 15:36:46 +02:00
}
2018-05-11 11:30:17 +02:00
for (i = 1; i < _arrayLength; i++) {
2018-05-13 21:41:44 +02:00
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
2018-05-07 15:36:46 +02:00
}
2018-05-14 16:06:03 +02:00
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
2018-05-07 15:36:46 +02:00
}
2018-05-14 18:59:05 +02:00
2018-05-14 16:06:03 +02:00
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
2018-05-13 21:41:44 +02:00
2018-05-14 16:06:03 +02:00
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
2018-05-07 15:36:46 +02:00
double deviation = 0.0;
2018-05-14 16:06:03 +02:00
// Mean square
for (i = 1; i < xErrorLength; i++) {
2018-05-07 15:36:46 +02:00
deviation += pow(xError[i] - mean, 2);
}
2018-05-11 11:30:17 +02:00
deviation /= xErrorLength;
2018-05-14 16:06:03 +02:00
printf("mean:%lf, devitation:%lf", mean, deviation);
2018-05-07 15:36:46 +02:00
2018-05-14 16:06:03 +02:00
// write in file
2018-05-14 18:59:05 +02:00
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp3);
//fclose(fp2);
2018-05-14 16:06:03 +02:00
free(local_weights);
2018-05-13 21:41:44 +02:00
2018-05-14 18:59:05 +02:00
//weightsLogger( local_weights, USED_WEIGHTS );
2018-04-26 16:39:47 +02:00
}
2018-05-11 11:30:17 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
differentialPredecessor
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
variant (3/3),
2018-05-14 16:06:03 +02:00
differential predecessor.
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
*/
2018-05-13 21:41:44 +02:00
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
2018-05-14 13:54:56 +02:00
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
2018-05-13 21:41:44 +02:00
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
2018-05-11 11:30:17 +02:00
2018-05-13 21:41:44 +02:00
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
2018-05-11 11:30:17 +02:00
char fileName[512];
double xError[2048];
int xCount = 0, i;
2018-05-11 14:19:20 +02:00
double xPredicted = 0.0;
double xActual = 0.0;
2018-05-11 11:30:17 +02:00
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
2018-05-14 16:06:03 +02:00
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
2018-05-11 11:30:17 +02:00
2018-05-11 14:19:20 +02:00
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
2018-05-13 21:41:44 +02:00
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
2018-05-11 11:30:17 +02:00
2018-05-11 14:19:20 +02:00
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
2018-05-11 11:30:17 +02:00
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
2018-05-14 16:06:03 +02:00
//fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
2018-05-11 11:30:17 +02:00
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
2018-05-11 14:19:20 +02:00
for (i = 1; i < _arrayLength; i++) {
2018-05-11 11:30:17 +02:00
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
2018-05-11 14:19:20 +02:00
for (i = 1; i < _arrayLength; i++) {
2018-05-13 21:41:44 +02:00
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
2018-05-11 11:30:17 +02:00
}
2018-05-14 16:06:03 +02:00
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
2018-05-11 11:30:17 +02:00
}
2018-05-14 18:59:05 +02:00
2018-05-14 16:06:03 +02:00
/* int xErrorLength = sizeof(xError) / sizeof(xError[0]);
2018-05-11 14:19:20 +02:00
printf("vor:%d", xErrorLength);
2018-05-13 21:41:44 +02:00
popNAN(xError);
2018-05-11 14:19:20 +02:00
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
2018-05-11 11:30:17 +02:00
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
2018-05-11 14:19:20 +02:00
//mkSvgGraph(points);
2018-05-11 11:30:17 +02:00
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
2018-05-14 13:54:56 +02:00
*/
2018-05-14 16:06:03 +02:00
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
2018-05-14 18:59:05 +02:00
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
fclose(fp6);
2018-05-14 16:06:03 +02:00
free(local_weights);
2018-05-14 18:59:05 +02:00
//weightsLogger( local_weights, USED_WEIGHTS );
2018-05-11 11:30:17 +02:00
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
mkFileName
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
2018-05-07 15:36:46 +02:00
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
2018-05-07 15:36:46 +02:00
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
2018-05-07 15:36:46 +02:00
strncat(buffer, suffix, max_len - date_len);
return buffer;
2018-04-26 16:39:47 +02:00
}
2018-04-26 16:39:47 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 12:00:37 +02:00
fileSuffix
2018-05-11 12:00:37 +02:00
Contains and returns every suffix for all existing filenames
2018-05-11 12:00:37 +02:00
======================================================================================================
*/
2018-05-07 15:36:46 +02:00
char * fileSuffix(int id) {
2018-05-11 11:30:17 +02:00
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id];
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 12:00:37 +02:00
myLogger
2018-05-11 12:00:37 +02:00
Logs x,y points to svg graph
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-13 21:41:44 +02:00
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
2018-05-14 18:59:05 +02:00
fclose(fp);
2018-05-13 21:41:44 +02:00
}
2018-05-14 13:54:56 +02:00
2018-05-13 21:41:44 +02:00
2018-05-14 18:59:05 +02:00
/*
======================================================================================================
bufferLogger
formats output of mkSvgGraph -- Please open graphResults.html to see the output--
======================================================================================================
*/
2018-05-07 15:36:46 +02:00
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
2018-05-11 11:30:17 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
2018-05-07 15:36:46 +02:00
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
}
2018-05-11 11:42:51 +02:00
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
2018-05-14 13:54:56 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPredicted from localMean
2018-05-07 15:36:46 +02:00
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
2018-05-11 11:42:51 +02:00
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
2018-05-11 11:30:17 +02:00
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
2018-05-07 15:36:46 +02:00
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
2018-05-11 11:42:51 +02:00
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
2018-05-11 12:00:37 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
2018-05-14 16:06:03 +02:00
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
2018-05-11 11:30:17 +02:00
strcat(buffer, _buffer);
}
2018-05-14 13:54:56 +02:00
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
2018-05-07 15:36:46 +02:00
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
sum_array
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
Sum of all elements in x within a defined length
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-11 11:30:17 +02:00
double sum_array(double x[], int xlength) {
2018-05-07 15:36:46 +02:00
int i = 0;
double sum = 0.0;
2018-05-11 12:00:37 +02:00
if (xlength != 0) {
for (i = 0; i < xlength; i++) {
sum += x[i];
}
}
2018-05-07 15:36:46 +02:00
return sum;
2018-04-26 16:39:47 +02:00
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 12:00:37 +02:00
popNanLength
2018-05-11 12:00:37 +02:00
returns length of new array without NAN values
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 11:30:17 +02:00
*/
2018-05-13 21:41:44 +02:00
double *popNAN(double *xError) {
2018-05-14 13:54:56 +02:00
int i, counter = 1;
2018-05-13 21:41:44 +02:00
double tmpLength = 0.0;
double *tmp = NULL;
double *more_tmp = NULL;
2018-05-14 13:54:56 +02:00
2018-05-13 21:41:44 +02:00
for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
counter ++;
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
printf("xERROR:%lf\n", tmp[counter - 1]);
2018-05-14 13:54:56 +02:00
tmpLength++;
2018-05-13 21:41:44 +02:00
}
}
counter += 1;
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
tmp = more_tmp;
2018-05-14 13:54:56 +02:00
*tmp = tmpLength; // Length of array has to be stored in tmp[0],
2018-05-13 21:41:44 +02:00
// Cause length is needed later on in the math functions.
// xError counting has to begin with 1 in the other functions !
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
return tmp;
2018-05-11 11:30:17 +02:00
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
r2
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
returns a random double value between 0 and 1
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
*/
2018-05-07 15:36:46 +02:00
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 12:00:37 +02:00
rndm
2018-05-11 12:00:37 +02:00
fills a double variable with random value and returns it
2018-05-11 12:00:37 +02:00
======================================================================================================
*/
2018-05-07 15:36:46 +02:00
double rndm(void) {
double rndmval = r2();
return rndmval;
}
2018-05-04 01:28:36 +02:00
2018-05-04 16:30:12 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-04 16:30:12 +02:00
2018-05-11 12:00:37 +02:00
mkSvgGraph
2018-05-04 16:30:12 +02:00
2018-05-11 12:00:37 +02:00
parses template.svg and writes results in said template
2018-05-04 01:28:36 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-04 01:28:36 +02:00
*/
2018-05-07 15:36:46 +02:00
void mkSvgGraph(point_t points[]) {
2018-05-13 21:41:44 +02:00
FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("graphResults.html", "w");
2018-05-07 15:36:46 +02:00
char line[512];
2018-05-11 11:30:17 +02:00
char firstGraph[15] = { "<path d=\"M0 0" };
2018-05-07 15:36:46 +02:00
if (input == NULL) {
exit(EXIT_FAILURE);
}
2018-05-11 11:30:17 +02:00
2018-05-07 15:36:46 +02:00
char buffer[131072] = "";
2018-05-11 11:30:17 +02:00
2018-05-07 15:36:46 +02:00
memset(buffer, '\0', sizeof(buffer));
2018-05-11 12:00:37 +02:00
while (!feof(input)) {
2018-05-07 15:36:46 +02:00
fgets(line, 512, input);
2018-05-11 12:00:37 +02:00
strncat(buffer, line, strlen(line));
2018-05-07 15:36:46 +02:00
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
2018-05-04 01:28:36 +02:00
}
2018-05-07 15:49:17 +02:00
2018-05-07 00:18:25 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
rdPPM
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-07 17:10:43 +02:00
static imagePixel_t *rdPPM(char *fileName) {
2018-05-07 15:36:46 +02:00
char buffer[16];
2018-05-07 00:18:25 +02:00
imagePixel_t *image;
2018-05-07 15:36:46 +02:00
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
2018-05-07 00:18:25 +02:00
}
2018-05-07 15:36:46 +02:00
if (!fgets(buffer, sizeof(buffer), fp)) {
2018-05-07 00:18:25 +02:00
perror(fileName);
exit(EXIT_FAILURE);
}
2018-05-07 15:36:46 +02:00
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
2018-05-07 00:18:25 +02:00
exit(EXIT_FAILURE);
}
2018-05-07 15:36:46 +02:00
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
2018-05-07 00:18:25 +02:00
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
2018-05-07 15:36:46 +02:00
while (c == '#') {
while (getc(fp) != '\n');
2018-05-07 00:18:25 +02:00
c = getc(fp);
}
ungetc(c, fp);
2018-05-07 15:36:46 +02:00
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
2018-05-07 00:18:25 +02:00
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
2018-05-07 15:36:46 +02:00
if (fscanf(fp, "%d", &rgbColor) != 1) {
2018-05-07 00:18:25 +02:00
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
2018-05-07 15:36:46 +02:00
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
2018-05-07 00:18:25 +02:00
exit(EXIT_FAILURE);
}
2018-05-07 15:36:46 +02:00
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
2018-05-07 00:18:25 +02:00
exit(EXIT_FAILURE);
}
2018-05-07 15:36:46 +02:00
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
2018-05-07 00:18:25 +02:00
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
mkPpmFile
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image. Build for debugging
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 00:18:25 +02:00
*/
2018-05-07 15:36:46 +02:00
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
2018-05-07 00:18:25 +02:00
}
2018-05-11 11:30:17 +02:00
2018-05-07 00:18:25 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
2018-05-11 12:00:37 +02:00
ppmColorChannel
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
gets one of the rgb color channels and writes them to a file
2018-05-07 00:18:25 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-07 15:36:46 +02:00
*/
2018-05-07 00:18:25 +02:00
2018-05-07 22:39:31 +02:00
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
2018-05-14 18:59:05 +02:00
// int length = (image->x * image->y) / 3;
2018-05-11 11:30:17 +02:00
int i = 0;
2018-05-07 15:36:46 +02:00
if (image) {
2018-05-11 12:00:37 +02:00
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
fprintf(fp, "%d\n", image->data[i].green);
2018-05-07 00:18:25 +02:00
}
2018-05-11 11:30:17 +02:00
}
2018-05-07 22:39:31 +02:00
fclose(fp);
2018-05-11 11:30:17 +02:00
return NUMBER_OF_SAMPLES;
2018-05-07 22:39:31 +02:00
}
2018-05-11 11:30:17 +02:00
/*
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
colorSamples
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
2018-05-11 11:30:17 +02:00
2018-05-11 12:00:37 +02:00
======================================================================================================
2018-05-11 11:30:17 +02:00
*/
2018-05-11 12:00:37 +02:00
void colorSamples(FILE* fp) {
2018-05-14 13:54:56 +02:00
int i = 0;
2018-05-11 11:30:17 +02:00
char buffer[NUMBER_OF_SAMPLES];
2018-05-07 22:39:31 +02:00
2018-05-11 12:00:37 +02:00
while (!feof(fp)) {
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i;
2018-05-07 22:39:31 +02:00
}
2018-05-11 11:30:17 +02:00
}
2018-05-07 22:39:31 +02:00
fclose(fp);
2018-05-07 00:18:25 +02:00
}
2018-05-11 11:30:17 +02:00
2018-05-14 18:59:05 +02:00
/*
======================================================================================================
windowXMean
returns mean value of given input, which has a length of WINDOWSIZE
======================================================================================================
*/
2018-05-11 12:00:37 +02:00
double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
2018-05-11 11:30:17 +02:00
2018-05-14 18:59:05 +02:00
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
sum += *ptr;
2018-05-11 12:00:37 +02:00
}
return sum / (double)_arraylength;
2018-05-11 11:30:17 +02:00
}
2018-05-13 21:41:44 +02:00