added stuff

This commit is contained in:
Friese 2018-05-11 11:30:17 +02:00
parent 2b1469f55e
commit 0a8a81677c
1 changed files with 307 additions and 170 deletions

View File

@ -1,9 +1,9 @@
// //
// //
// NLMSvariants.c // NLMSvariants.c
// //
// Created by FBRDNLMS on 26.04.18. // Created by FBRDNLMS on 26.04.18.
// Copyright © 2018 FBRDNLMS. All rights reserved. //
// //
#include <stdio.h> #include <stdio.h>
@ -13,24 +13,26 @@
#include <string.h> #include <string.h>
#include <float.h> // DBL_MAX #include <float.h> // DBL_MAX
#define M 1000 #define NUMBER_OF_SAMPLES 1000
#define WINDOWSIZE 5
#define tracking 40 //Count of weights #define tracking 40 //Count of weights
#define learnrate 1.0 #define learnrate 0.8
#define PURE_WEIGHTS 0 #define PURE_WEIGHTS 0
#define USED_WEIGHTS 1 #define USED_WEIGHTS 1
#define RESULTS 3 #define RESULTS 3
#define DIRECT_PREDECESSOR 2 #define DIRECT_PREDECESSOR 2
#define LOCAL_MEAN 4 #define LOCAL_MEAN 4
#define TEST_VALUES 5 #define TEST_VALUES 5
#define DIFFERENTIAL_PREDECESSOR 6
#define RGB_COLOR 255 #define RGB_COLOR 255
#if defined(_MSC_VER) #if defined(_MSC_VER)
#include <BaseTsd.h> #include <BaseTsd.h>
typedef SSIZE_T ssize_t; typedef SSIZE_T ssize_t;
#endif #endif
double x[] = { 0 }; //double x[] = { 0.0 };
double _x[M] = { 0 }; double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
double w[M][M] = { { 0 },{ 0 } }; double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
/* *svg graph building* */ /* *svg graph building* */
typedef struct { typedef struct {
@ -38,9 +40,9 @@ typedef struct {
double yVal[7]; double yVal[7];
}point_t; }point_t;
point_t points[M]; // [0]=xActual, [1]=xPredicted from directPredecessor, [2]=xPredicted from localMean point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
/* *ppm reader/writer* */ /* *ppm read, copy, write* */
typedef struct { typedef struct {
unsigned char red, green, blue; unsigned char red, green, blue;
}colorChannel_t; }colorChannel_t;
@ -53,7 +55,7 @@ typedef struct {
static imagePixel_t * rdPPM(char *fileName); // read PPM file format static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void ppmTo_X( FILE* fp ); // stores color channel values in _x[] void colorSamples( FILE* fp ); // stores color channel values in xSamples[]
/* *file handling* */ /* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId); char * mkFileName(char* buffer, size_t max_len, int suffixId);
@ -69,31 +71,33 @@ double rndm(void);
double sum_array(double x[], int length); double sum_array(double x[], int length);
void directPredecessor(void); void directPredecessor(void);
void localMean(void); void localMean(void);
void differentialPredecessor( void );
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
double windowXMean( int _arraylength, int xCount );
int main(int argc, char **argv) { int main(int argc, char **argv) {
char fileName[50]; char fileName[50];
int i, xLength; int i, k, xLength;
int *colorChannel; int *colorChannel;
imagePixel_t *image; imagePixel_t *image;
image = rdPPM("beaches.ppm");
image = rdPPM("cow.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES); mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w"); FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image); xLength = ppmColorChannel(fp5, image);
printf("%d\n", xLength); printf("%d\n", xLength);
FILE* fp6 = fopen(fileName, "r"); FILE* fp6 = fopen(fileName, "r");
ppmTo_X ( fp6 ); colorSamples ( fp6 );
srand((unsigned int)time(NULL)); srand((unsigned int)time(NULL));
for (i = 0; i < M; i++) { for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
// _x[i] += ((255.0 / M) * i); // Init test values // _x[i] += ((255.0 / M) * i); // Init test values
for (int k = 0; k < M; k++) { for (int k = 0; k < WINDOWSIZE; k++) {
w[k][i] = rndm(); // Init weights w[k][i]= rndm(); // Init weights
} }
} }
@ -101,7 +105,7 @@ int main(int argc, char **argv) {
// save plain test_array before math magic happens // save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w"); FILE *fp0 = fopen(fileName, "w");
for (i = 0; i <= tracking; i++) { for (i = 0; i <= tracking; i++) {
for (int k = 0; k < tracking; k++) { for ( k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]); fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
} }
} }
@ -110,14 +114,14 @@ int main(int argc, char **argv) {
// math magic // math magic
localMean(); localMean();
directPredecessor(); // TODO: used_weights.txt has gone missing! //directPredecessor();
//differentialPredecessor();
// save test_array after math magic happened // save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) ); // memset( fileName, '\0', sizeof(fileName) );
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS); mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w"); FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) { for (i = 0; i < tracking; i++) {
for (int k = 0; k < tracking; k++) { for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]); fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
} }
@ -131,62 +135,83 @@ int main(int argc, char **argv) {
/* /*
======================================================================================= ======================================================================================================
localMean localMean
Variant (1/3), substract local mean.
Variant (1/3), substract local mean. ======================================================================================================
=======================================================================================
*/ */
void localMean(void) { void localMean(void) {
char fileName[50]; char fileName[50];
double xError[M]; // includes e(n) double xError[NUMBER_OF_SAMPLES]; // includes e(n)
memset(xError, 0, M);// initialize xError-array with Zero memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0; // runtime var int xCount = 0, i; // runtime var;
int i;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w"); FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n\n\n\n*********************LocalMean*********************\n"); fprintf(fp4, "\n=====================================LocalMean=====================================\n");
for (xCount = 1; xCount < M; xCount++) { double xMean = xSamples[0];
double weightedSum = 0.0;
double filterOutput = 0.0;
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
//double xPartArray[xCount]; //includes all values at the size of runtime var
double xMean = (xCount > 0) ? (sum_array(_x, xCount) / xCount) : 0;// xCount can not be zero for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
double xPartArray[xCount]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
xMean = ( xCount > 0 ) ? windowXMean(_arrayLength, xCount) : 0;
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
double xPredicted = 0.0; for (i = 1; i < _arrayLength ; i++) { //get predicted value
double xActual = _x[xCount + 1]; xPredicted += (w[i][xCount] * ( xSamples[xCount - i] - xMean));
for (i = 1; i < xCount; i++) { //get predicted value
xPredicted += (w[i][xCount] * (_x[xCount - i] - xMean));
} }
xPredicted += xMean; xPredicted += xMean;
xError[xCount] = xActual - xPredicted; xError[xCount] = xActual - xPredicted;
points[xCount].xVal[2] = xCount; printf("Pred: %f\t\tActual:%f\n", xPredicted,xActual);
points[xCount].yVal[2] = xPredicted; points[xCount].xVal[1] = xCount;
double xSquared = 0.0; points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
for (i = 1; i < xCount; i++) { //get x squared xSquared = 0.0;
xSquared = +pow(_x[xCount - i], 2); for (i = 1; i < _arrayLength; i++) { //get xSquared
//xSquared += pow(xSamples[xCount - i], 2);
xSquared += pow(xSamples[xCount - i] - xMean, 2);
printf("xSquared:%f\n", xSquared);
} }
if(xSquared == 0.0){ // returns Pred: -1.#IND00
for (i - 1; i < xCount; i++) { //update weights xSquared = 1.0;
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared); }
//printf("%f\n", xSquared);
for (i = 1; i < _arrayLength; i++) { //update weights
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - i] - xMean) / xSquared);
} }
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
} }
int xErrorLength = sizeof(xError) / sizeof(xError[0]); int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / M; printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0; double deviation = 0.0;
// Mean square // Mean square
for (i = 0; i < M - 1; i++) { for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i], 2); deviation += pow(xError[i] - mean, 2);
} }
deviation /= xErrorLength; deviation /= xErrorLength;
@ -199,17 +224,15 @@ void localMean(void) {
fclose(fp4); fclose(fp4);
} }
/* /*
=================================== ======================================================================================================
directPredecessor directPredecessor
Variant (2/3),
substract direct predecessor
Variant (2/3), ======================================================================================================
substract direct predecessor
===================================
*/ */
void directPredecessor(void) { void directPredecessor(void) {
@ -217,46 +240,56 @@ void directPredecessor(void) {
double xError[2048]; double xError[2048];
int xCount = 0, i; int xCount = 0, i;
double xActual; double xActual;
int xPredicted = 0.0;
// File handling // File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w"); FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n\n\n\n*********************DirectPredecessor*********************\n"); fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
for (xCount = 1; xCount < M + 1; xCount++) { for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
xActual = _x[xCount + 1]; double xPartArray[xCount]; //includes all values at the size of runtime var
double xPredicted = 0.0; //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
printf("xCount:%d, length:%d\n", xCount, _arrayLength);
double xMean = ( xCount > 0 ) ? windowXMean(_arrayLength, xCount) : 0;
printf("%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
for (i = 1; i < xCount; i++) { for (i = 1; i < _arrayLength; i++) {
xPredicted += (w[i][xCount] * (_x[xCount - i] - _x[xCount - i - 1])); xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
} }
xPredicted += _x[xCount - 1]; xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted; xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[0] = xCount; points[xCount].xVal[2] = xCount;
points[xCount].yVal[0] = xActual; points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[1] = xCount; points[xCount].xVal[5] = xCount;
points[xCount].yVal[1] = xPredicted; points[xCount].yVal[5] = xError[xCount];
double xSquared = 0.0; double xSquared = 0.0;
for (i = 1; i < xCount; i++) { for (i = 1; i < _arrayLength; i++) {
xSquared += pow(_x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
} }
for (i = 1; i < xCount; i++) { for (i = 1; i < _arrayLength; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((_x[xCount - i] - _x[xCount - i - 1]) / xSquared); //TODO: double val out of bounds w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
} }
} }
int xErrorLength = sizeof(xError) / sizeof(xError[0]); int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength; double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0; double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) { for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2); deviation += pow(xError[i] - mean, 2);
} }
deviation /= xErrorLength;
mkSvgGraph(points); mkSvgGraph(points);
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
@ -264,19 +297,80 @@ void directPredecessor(void) {
} }
/*
======================================================================================================
differentialPredecessor
variant (3/3),
differenital predecessor.
======================================================================================================
*/
void differentialPredecessor ( void ) {
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual;
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
xActual = xSamples[xCount + 1];
double xPredicted = 0.0;
for (i = 1; i < xCount; i++) {
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < xCount; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < xCount; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp6);
}
/* /*
========================================================================= ======================================================================================================
mkFileName mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
Writes the current date plus the suffix with index suffixId ======================================================================================================
into the given buffer. If[M ?K the total length is longer than max_len,
only max_len characters will be written.
=========================================================================
*/ */
char *mkFileName(char* buffer, size_t max_len, int suffixId) { char *mkFileName(char* buffer, size_t max_len, int suffixId) {
@ -292,100 +386,115 @@ char *mkFileName(char* buffer, size_t max_len, int suffixId) {
} }
/* /*
========================================================================= ======================================================================================================
fileSuffix fileSuffix
Contains and returns every suffix for all existing filenames Contains and returns every suffix for all existing filenames
========================================================================== ======================================================================================================
*/ */
char * fileSuffix(int id) { char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt" }; char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id]; return suffix[id];
} }
/* /*
========================================================================== ======================================================================================================
myLogger myLogger
Logs x,y points to svg graph
Logs on filepointer, used for svg graphing ======================================================================================================
==========================================================================
*/
/*
void myLogger(FILE* fp, point_t points[]) {
int i;
for (i = 0; i <= M; i++) { // xActual
fprintf(fp, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor
fprintf(fp, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean
fprintf(fp, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
}
}
*/ */
void bufferLogger(char *buffer, point_t points[]) { void bufferLogger(char *buffer, point_t points[]) {
int i; int i;
char _buffer[512] = ""; char _buffer[512] = "";
for (i = 0; i <= M; i++) { // xActual for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]); sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer); strcat(buffer, _buffer);
} }
strcat(buffer, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n"); strcat(buffer, "\" fill=\"none\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]); sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer); strcat(buffer, _buffer);
} }
strcat(buffer, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n"); strcat(buffer, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]); sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer); strcat(buffer, _buffer);
} }
strcat(buffer, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++ ){ //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
strcat(buffer, _buffer);
}
} }
/* /*
========================================================================= ======================================================================================================
sum_array sum_array
Sum of all elements in x within a defined length
Sum of all elements in x within a defined length ======================================================================================================
=========================================================================
*/ */
double sum_array(double x[], int length) { double sum_array(double x[], int xlength) {
int i = 0; int i = 0;
double sum = 0.0; double sum = 0.0;
for (i = 0; i< length; i++) { if (xlength !=0 ){
sum += x[i]; for (i = 0; i < xlength; i++) {
} sum += x[i];
}
}
return sum; return sum;
} }
/* /*
========================================================================== ======================================================================================================
r2 popNanLength
returns a random double value between 0 and 1 returns length of new array without NAN values
========================================================================== ======================================================================================================
*/
double *popNAN( double *xError,int xErrorLength ) {
int i, counter;
double noNAN [xErrorLength];
for ( i = 0; i < xErrorLength; i++) {
if ( !isnan(xError[i]) ) {
noNAN[i] = xError[i];
counter++;
}
}
realloc(noNAN, counter * sizeof(double));
int noNANLength = sizeof(noNAN)/ sizeof(noNAN[0]);
memcpy(xError, noNAN, noNANLength);
return xError;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
======================================================================================================
*/ */
double r2(void) { double r2(void) {
@ -393,15 +502,14 @@ double r2(void) {
} }
/* /*
========================================================================== ======================================================================================================
rndm rndm
fills a double variable with random value and returns it fills a double variable with random value and returns it
========================================================================== ======================================================================================================
*/ */
double rndm(void) { double rndm(void) {
@ -410,29 +518,28 @@ double rndm(void) {
} }
/* /*
========================================================================== ======================================================================================================
mkSvgGraph mkSvgGraph
parses template.svg and writes results in said template parses template.svg and writes results in said template
========================================================================== ======================================================================================================
*/ */
void mkSvgGraph(point_t points[]) { void mkSvgGraph(point_t points[]) {
FILE *input = fopen("template.svg", "r"); FILE *input = fopen("template.svg", "r");
FILE *target = fopen("output.svg", "w"); FILE *target = fopen("output.svg", "w");
char line[512]; char line[512];
char firstGraph[15] = { "<path d=\"M0 0" }; char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) { if (input == NULL) {
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
char buffer[131072] = ""; char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer)); memset(buffer, '\0', sizeof(buffer));
while(!feof(input)) { while(!feof(input)) {
fgets(line, 512, input); fgets(line, 512, input);
@ -448,16 +555,15 @@ void mkSvgGraph(point_t points[]) {
} }
/* /*
=========================================================================== ======================================================================================================
rdPPM rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture size of given picture
========================================================================== ======================================================================================================
*/ */
static imagePixel_t *rdPPM(char *fileName) { static imagePixel_t *rdPPM(char *fileName) {
@ -513,16 +619,15 @@ static imagePixel_t *rdPPM(char *fileName) {
} }
/* /*
======================================================================================= ======================================================================================================
mkPpmFile mkPpmFile
gets output from the result of rdPpmFile and writes a new mkPpmFile. Best Case is a gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image carbon copy of the source image. Build for debugging
======================================================================================= ======================================================================================================
*/ */
void mkPpmFile(char *fileName, imagePixel_t *image) { void mkPpmFile(char *fileName, imagePixel_t *image) {
@ -538,42 +643,74 @@ void mkPpmFile(char *fileName, imagePixel_t *image) {
fclose(fp); fclose(fp);
} }
/* /*
====================================================================================== ======================================================================================================
ppmColorChannel ppmColorChannel
gets one of the rgb color channels and returns the array gets one of the rgb color channels and writes them to a file
====================================================================================== ======================================================================================================
*/ */
int ppmColorChannel(FILE* fp, imagePixel_t *image) { int ppmColorChannel(FILE* fp, imagePixel_t *image) {
int length = 1000; // (image->x * image->y) / 3; // int length = 1000; // (image->x * image->y) / 3;
int i = 0; int i = 0;
if (image) { if (image) {
for ( i = 0; i <= length; i++ ){ for ( i = 0; i < NUMBER_OF_SAMPLES - 1; i++ ){
fprintf(fp,"%d\n", image->data[i].green); fprintf(fp,"%d\n", image->data[i].green);
} }
} }
fclose(fp); fclose(fp);
return length; return NUMBER_OF_SAMPLES;
} }
void ppmTo_X( FILE* fp ) {
/*
======================================================================================================
colorSamples
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
======================================================================================================
*/
void colorSamples( FILE* fp ) {
int i = 0; int i = 0;
int d, out; int d, out;
double f; double f;
int length = 1000; char buffer[NUMBER_OF_SAMPLES];
char buffer[length];
while ( !feof(fp) ) { while ( !feof(fp) ) {
if ( fgets(buffer, length, fp) != NULL ) { if ( fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL ) {
sscanf(buffer,"%lf", &_x[i]); sscanf(buffer,"%lf", &xSamples[i]);
printf("%lf\n", _x[i] ); //printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i; ++i;
} }
} }
fclose(fp); fclose(fp);
} }
double windowXMean (int _arraylength, int xCount) {
int count;
double sum = 0.0;
double *ptr;
// printf("*window\t\t*base\t\txMean\n\n");
for ( ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
//window = xCount - _arraylength
//base = window - _arraylength;
//sum = 0.0;
//for( count = 0; count < _arraylength; count++){
sum += *ptr;
// printf("%f\n", *base);
//}
}
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
return sum/(double)_arraylength;
}