updated src file

This commit is contained in:
kbecke23 2018-05-16 12:12:16 +02:00
parent b3b5980e36
commit 11d45cdbab
1 changed files with 256 additions and 103 deletions

View File

@ -19,6 +19,7 @@ namespace NMLS_Graphisch
InitializeComponent(); InitializeComponent();
} }
static int NumberOfSamples = 1000; static int NumberOfSamples = 1000;
const int tracking = 40; const int tracking = 40;
static Stack<double> x = new Stack<double>(); static Stack<double> x = new Stack<double>();
@ -27,17 +28,26 @@ namespace NMLS_Graphisch
static double[,] w = new double[NumberOfSamples, NumberOfSamples]; static double[,] w = new double[NumberOfSamples, NumberOfSamples];
static double learnrate = 0.2; static double learnrate = 0.2;
static double[] pixel_array; static double[] pixel_array;
static int windowSize = 5; static int windowSize = 6;
private void button1_Click(object sender, EventArgs e) /*---------------------------------------------------
* GO_btn_click()
*
* starts the predefined algorithem with the specified parameters
*
*---------------------------------------------------*/
private void GO_btn_Click(object sender, EventArgs e)
{ {
NumberOfSamples = Int32.Parse(comboBox2.SelectedItem.ToString()); /* Initializing the chart to display all values */
chart1.ChartAreas[0].AxisX.Maximum = NumberOfSamples; NumberOfSamples = Int32.Parse(comboBox_pixel.SelectedItem.ToString());
chart1.ChartAreas[0].AxisY.Maximum = 300; chart_main.ChartAreas[0].AxisX.Maximum = NumberOfSamples;
chart1.ChartAreas[0].AxisY.Minimum = -5; chart_main.ChartAreas[0].AxisY.Maximum = 300;
chart_main.ChartAreas[0].AxisY.Minimum = -100;
if (checkBox1.Checked) /* If output is checked weights befor and after the algorithem are printed to a file.*/
if (checkBox_output.Checked)
{ {
for (int i = 0; i < tracking; i++) for (int i = 0; i < tracking; i++)
{ {
@ -51,19 +61,21 @@ namespace NMLS_Graphisch
} }
Series[] series = new Series[2]; Series[] series = new Series[2];
switch (comboBox1.SelectedItem.ToString())
/* Deciding which algorithem is going to be calculated */
switch (comboBox_algorithem.SelectedItem.ToString())
{ {
case "lokaler Mittelwert": case "lokaler Mittelwert":
series = lokalerMittelWert(); series = localMean();
break; break;
case "direkter Vorgänger": case "direkter Vorgänger":
series = direkterVorgaenger(); series = directPredecessor();
break; break;
case "differenzieller Vorgänger": case "differenzieller Vorgänger":
series = diffVorgaenger(); series = diffPredecessor();
break; break;
default: default:
@ -71,20 +83,22 @@ namespace NMLS_Graphisch
} }
/* Adding the series from the algorithems to the chart */
foreach (Series s in series) foreach (Series s in series)
{ {
if (chart1.Series.IndexOf(s.Name) < 0) if (chart_main.Series.IndexOf(s.Name) < 0)
{ {
chart1.Series.Add(s); chart_main.Series.Add(s);
} }
else else
{ {
chart1.Series.RemoveAt(chart1.Series.IndexOf(s.Name)); chart_main.Series.RemoveAt(chart_main.Series.IndexOf(s.Name));
chart1.Series.Add(s); chart_main.Series.Add(s);
} }
} }
if (checkBox1.Checked) /* Output weights after algorithem */
if (checkBox_output.Checked)
{ {
for (int i = 0; i < tracking; i++) for (int i = 0; i < tracking; i++)
{ {
@ -101,39 +115,59 @@ namespace NMLS_Graphisch
} }
Series[] lokalerMittelWert() /*---------------------------------------------------
* localMean()
*
* the algorithem for the local Mean
*
* returns a array of Series with the error and prediction for
* displaying in a chart
*
*---------------------------------------------------*/
Series[] localMean()
{ {
int x_count = 0; int x_count = 0;
double[] x_error = new double[NumberOfSamples]; double[] x_error = new double[NumberOfSamples];
x_error[0] = 0; x_error[0] = 0;
//Graphischer Stuff /* Inizilazing series for the main chart */
Series lokal_M_error = new Series("Lokaler Mittelwert Error"); Series localMeanError = new Series("Lokaler Mittelwert Error");
Series lokal_M_predic = new Series("Lokaler Mittelwert Prediction"); Series localMeanPredict = new Series("Lokaler Mittelwert Prediction");
lokal_M_error.ChartType = SeriesChartType.Spline; localMeanError.ChartType = SeriesChartType.Spline;
lokal_M_predic.ChartType = SeriesChartType.Spline; localMeanPredict.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples) /* Main while loop for the prediction and learing */
while (x_count < NumberOfSamples - 1)
{ {
/* Initializing a part array of the actual array to capture the last WINDOWSIZE pixels
* for predicting and getting the average of the array*/
double[] x_part_Array = new double[x_count]; double[] x_part_Array = new double[x_count];
int _sourceIndex = (x_count > windowSize) ? x_count - windowSize : 0; int _sourceIndex = (x_count > windowSize) ? x_count - windowSize : 0;
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : (x_count > 0) ? x_count : 0; int _arrayLength = (x_count > windowSize) ? windowSize : x_count;
Array.Copy(_x, _sourceIndex, x_part_Array, 0, _arrayLength); Array.Copy(_x, _sourceIndex, x_part_Array, 0, _arrayLength);
double x_middle = (x_count > 0) ? (x_part_Array.Sum() / _arrayLength) : 0; double x_middle = (x_count > 0) ? (x_part_Array.Sum() / _arrayLength) : 0;
double x_pred = 0.0; double x_pred = 0.0;
double[] x_array = _x; double[] x_array = _x;
double x_actual = _x[x_count + 1]; double x_actual = _x[x_count + 1];
/* Prediction algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_middle)); x_pred += (w[i, x_count] * (x_array[x_count - i] - x_middle));
} }
x_pred += x_middle; x_pred += x_middle;
// Output Stuff /* If output is checked a file is produced with prediction, actual and the error */
if (checkBox1.Checked)
if (checkBox_output.Checked)
{ {
File.AppendAllText("lokalerMittelwert.txt", File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred), String.Format("{0}. X_pred {1}\n", x_count, x_pred),
@ -144,33 +178,46 @@ namespace NMLS_Graphisch
Encoding.UTF8); Encoding.UTF8);
} }
/* Calculating the error */
x_error[x_count] = x_actual - x_pred; x_error[x_count] = x_actual - x_pred;
double x_square = 0; double x_square = 0;
//Output Stuff /* Output */
if (checkBox1.Checked) if (checkBox_output.Checked)
{ {
File.AppendAllText("lokalerMittelwert.txt", File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]), String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8); Encoding.UTF8);
} }
/* Calulating the LMS value */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_square += Math.Pow(x_array[x_count - i] - x_middle, 2); x_square += Math.Pow(x_array[x_count - i] - x_middle, 2);
} }
/* x_square == 0.0, drives to undefined weights therefor we set it to 1 */
if (x_square == 0.0)
x_square = 1.0;
/* Learning algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_middle) / x_square); w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_middle) / x_square);
} }
// Graphischer Stuff /* Printing error and prediction on the series */
lokal_M_error.Points.AddXY(x_count, x_error[x_count]);
lokal_M_predic.Points.AddXY(x_count, x_pred); localMeanError.Points.AddXY(x_count, x_error[x_count]);
localMeanPredict.Points.AddXY(x_count, x_pred);
x_count += 1; x_count += 1;
} }
/* Calculating the avearage of the error and the variance of the error */
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length; double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0; double varianz = 0.0;
foreach (double x_e in x_error) foreach (double x_e in x_error)
@ -179,45 +226,64 @@ namespace NMLS_Graphisch
varianz += Math.Pow(x_e - mittel, 2); varianz += Math.Pow(x_e - mittel, 2);
} }
varianz /= x_error.Length; varianz /= x_error.Length;
if (checkBox1.Checked)
/* Displayes both on labels */
label3.Text = mittel.ToString();
label5.Text = varianz.ToString();
/* Output the result */
if (checkBox_output.Checked)
{ {
File.AppendAllText("ergebnisse.txt", File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel), String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8); Encoding.UTF8);
} }
return new Series[] { lokal_M_predic, lokal_M_error };
return new Series[] { localMeanPredict, localMeanError };
} }
Series[] direkterVorgaenger() /*---------------------------------------------------
* directPredecessor()
*
* the algorithem for the direct predecessor
*
* returns a array of Series with the error and prediction for
* displaying in a chart
*
*---------------------------------------------------*/
Series[] directPredecessor()
{ {
double[] x_error = new double[NumberOfSamples]; double[] x_error = new double[NumberOfSamples];
x_error[0] = 0; x_error[0] = 0;
int x_count = 0; int x_count = 0;
// Graphischer Stuff /* Inizilazing series for the main chart */
Series direkterVorgaenger_error = new Series("Direkter Vorgänger Error"); Series directPredecessorError = new Series("Direkter Vorgänger Error");
Series direkterVorgaenger_predic = new Series("Direkter Vorgänger Prediction"); Series directPredecessorPrediction = new Series("Direkter Vorgänger Prediction");
direkterVorgaenger_error.ChartType = SeriesChartType.Spline; directPredecessorError.ChartType = SeriesChartType.Spline;
direkterVorgaenger_predic.ChartType = SeriesChartType.Spline; directPredecessorPrediction.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples) /* Main while loop for the prediction and learing */
while (x_count < NumberOfSamples - 1)
{ {
double x_pred = 0.0; double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1]; double x_actual = _x[x_count + 1];
if (x_count > 0) if (x_count > 0)
{ {
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count; /* Initializing the windowsize */
int _arrayLength = (x_count > windowSize) ? windowSize : x_count;
/* Prediction algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_pred += (w[i, x_count] * (x_array[x_count - 1] - x_array[x_count - i - 1])); x_pred += (w[i, x_count] * (_x[x_count - 1] - _x[x_count - i - 1]));
} }
x_pred += x_array[x_count - 1]; x_pred += _x[x_count - 1];
// Output Stuff /* If output is checked a file is produced with prediction, actual and the error */
if (checkBox1.Checked) if (checkBox_output.Checked)
{ {
File.AppendAllText("direkterVorgaenger.txt", File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred), String.Format("{0}. X_pred {1}\n", x_count, x_pred),
@ -228,11 +294,11 @@ namespace NMLS_Graphisch
Encoding.UTF8); Encoding.UTF8);
} }
/* Calculating the error */
x_error[x_count] = x_actual - x_pred; x_error[x_count] = x_actual - x_pred;
// Output Stuff /* Output */
if (checkBox1.Checked) if (checkBox_output.Checked)
{ {
File.AppendAllText("direkterVorgaenger.txt", File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]), String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
@ -240,23 +306,34 @@ namespace NMLS_Graphisch
} }
double x_square = 0; double x_square = 0;
/* Calulating the LMS value */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_square += Math.Pow(x_array[x_count - 1] - x_array[x_count - i - 1], 2); x_square += Math.Pow(_x[x_count - 1] - _x[x_count - i - 1], 2);
} }
/* x_square == 0.0, drives to undefined weights therefor we set it to 1 */
if (x_square == 0.0)
{
x_square = 1;
}
/* Learning algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - 1] - x_array[x_count - i - 1]) / x_square); w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((_x[x_count - 1] - _x[x_count - i - 1]) / x_square);
} }
} }
//Graphischer Stuff /* Printing error and prediction on the series */
direkterVorgaenger_error.Points.AddXY(x_count, x_error[x_count]); directPredecessorError.Points.AddXY(x_count, x_error[x_count]);
direkterVorgaenger_predic.Points.AddXY(x_count, x_pred); directPredecessorPrediction.Points.AddXY(x_count, x_pred);
x_count += 1; x_count += 1;
} }
/* Calculating the avearage of the error and the variance of the error */
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length; double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0; double varianz = 0.0;
foreach (double x_e in x_error) foreach (double x_e in x_error)
@ -265,45 +342,64 @@ namespace NMLS_Graphisch
varianz += Math.Pow(x_e - mittel, 2); varianz += Math.Pow(x_e - mittel, 2);
} }
varianz /= x_error.Length; varianz /= x_error.Length;
if (checkBox1.Checked)
/* Displayes both on labels */
label3.Text = mittel.ToString();
label5.Text = varianz.ToString();
/* Output the result */
if (checkBox_output.Checked)
{ {
File.AppendAllText("ergebnisse.txt", File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel), String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8); Encoding.UTF8);
} }
return new Series[] { direkterVorgaenger_error, direkterVorgaenger_predic }; return new Series[] { directPredecessorError, directPredecessorPrediction };
} }
Series[] diffVorgaenger() /*---------------------------------------------------
* diffPredecessor()
*
* the algorithem for the differential predecessor
*
* returns a array of Series with the error and prediction for
* displaying in a chart
*
*---------------------------------------------------*/
Series[] diffPredecessor()
{ {
double[] x_error = new double[NumberOfSamples]; double[] x_error = new double[NumberOfSamples];
x_error[0] = 0; x_error[0] = 0;
int x_count = 1; int x_count = 0;
//Graphischer Stuff /* Inizilazing series for the main chart */
Series diffVorgaenger_error = new Series("Differenzieller Vorgänger Error"); Series diffPredecessorError = new Series("Differenzieller Vorgänger Error");
Series diffVorgaenger_predic = new Series("Differenzieller Vorgänger Prediction"); Series diffPredecessorPrediction = new Series("Differenzieller Vorgänger Prediction");
diffVorgaenger_error.ChartType = SeriesChartType.Spline; diffPredecessorError.ChartType = SeriesChartType.Spline;
diffVorgaenger_predic.ChartType = SeriesChartType.Spline; diffPredecessorPrediction.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples) /* Main while loop for the prediction and learing */
while (x_count < NumberOfSamples - 1)
{ {
double x_pred = 0.0; double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1]; double x_actual = _x[x_count + 1];
if (x_count > 0) if (x_count > 0)
{ {
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count;
/* Initializing the windowsize */
int _arrayLength = (x_count > windowSize) ? windowSize : x_count;
/* Prediction algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_array[x_count - i - 1])); x_pred += (w[i, x_count] * (_x[x_count - i] - _x[x_count - i - 1]));
} }
x_pred += x_array[x_count - 1]; x_pred += _x[x_count - 1];
// Output Stuff /* If output is checked a file is produced with prediction, actual and the error */
if (checkBox1.Checked) if (checkBox_output.Checked)
{ {
File.AppendAllText("differenziellerVorgaenger.txt", File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred), String.Format("{0}. X_pred {1}\n", x_count, x_pred),
@ -314,11 +410,11 @@ namespace NMLS_Graphisch
Encoding.UTF8); Encoding.UTF8);
} }
/* Calculating the error */
x_error[x_count] = x_actual - x_pred; x_error[x_count] = x_actual - x_pred;
// Output Stuff /* Output */
if (checkBox1.Checked) if (checkBox_output.Checked)
{ {
File.AppendAllText("differenziellerVorgaenger.txt", File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]), String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
@ -327,24 +423,35 @@ namespace NMLS_Graphisch
double x_square = 0; double x_square = 0;
/* Calulating the LMS value */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
x_square += Math.Pow(x_array[x_count - i] - x_array[x_count - i - 1], 2); x_square += Math.Pow(_x[x_count - i] - _x[x_count - i - 1], 2);
} }
/* x_square == 0.0, drives to undefined weights therefor we set it to 1 */
if (x_square == 0.0)
{
x_square = 1;
}
/* Learning algorithem */
for (int i = 1; i < _arrayLength; i++) for (int i = 1; i < _arrayLength; i++)
{ {
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_array[x_count - i - 1]) / x_square); w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((_x[x_count - i] - _x[x_count - i - 1]) / x_square);
} }
} }
//Graphischer Stuff /* Printing error and prediction on the series */
diffVorgaenger_error.Points.AddXY(x_count, x_error[x_count]); diffPredecessorError.Points.AddXY(x_count, x_error[x_count]);
diffVorgaenger_predic.Points.AddXY(x_count, x_pred); diffPredecessorPrediction.Points.AddXY(x_count, x_pred);
x_count += 1; x_count += 1;
} }
/* Calculating the avearage of the error and the variance of the error */
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length; double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0; double varianz = 0.0;
foreach (double x_e in x_error) foreach (double x_e in x_error)
@ -354,60 +461,88 @@ namespace NMLS_Graphisch
} }
varianz /= x_error.Length; varianz /= x_error.Length;
if (checkBox1.Checked) /* Displayes both on labels */
label3.Text = mittel.ToString();
label5.Text = varianz.ToString();
/* Output the result */
if (checkBox_output.Checked)
{ {
File.AppendAllText("ergebnisse.txt", File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel), String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8); Encoding.UTF8);
} }
return new Series[] { diffVorgaenger_error, diffVorgaenger_predic }; return new Series[] { diffPredecessorError, diffPredecessorPrediction };
} }
// Inizialisierung von Arrays /*---------------------------------------------------
* Form1_Load()
*
* loads the form and initializes some variables
*
*---------------------------------------------------*/
private void Form1_Load(object sender, EventArgs e) private void Form1_Load(object sender, EventArgs e)
{ {
comboBox1.SelectedIndex = 0; comboBox_algorithem.SelectedIndex = 0;
comboBox2.SelectedIndex = 0; comboBox_pixel.SelectedIndex = 0;
chart1.Series.Clear(); chart_main.Series.Clear();
Series x_actual = new Series("Actual x Value"); Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline; x_actual.ChartType = SeriesChartType.Spline;
/* Initializing weights and actual values
In case no picture is loaded, actual values are generated
And printing them on a chart */
for (int i = 0; i < NumberOfSamples; i++) for (int i = 0; i < NumberOfSamples; i++)
{ {
_x[i] += ((255.0 / NumberOfSamples) * i); _x[i] += ((255.0 / NumberOfSamples) * i);
for (int k = 0; k < windowSize; k++) for (int k = 0; k < windowSize; k++)
{ {
w[k, i] = rnd.NextDouble(); w[k, i] = rnd.NextDouble();
//Console.WriteLine(String.Format("Weight[{0}, {1}]: {2}",k,i, w[k, i]));
} }
x_actual.Points.AddXY(i, _x[i]); x_actual.Points.AddXY(i, _x[i]);
} }
chart1.Series.Add(x_actual); chart_main.Series.Add(x_actual);
} }
// Graphen Clearen /*---------------------------------------------------
private void button2_Click(object sender, EventArgs e) * Clear_btn_Click()
*
* clears the chart and reprints the actual values
*
*---------------------------------------------------*/
private void Clear_btn_Click(object sender, EventArgs e)
{ {
chart1.Series.Clear(); chart_main.Series.Clear();
Series x_actual = new Series("Actual x Value"); Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline; x_actual.ChartType = SeriesChartType.Spline;
for (int i = 0; i < NumberOfSamples; i++) for (int i = 0; i < Int32.Parse(comboBox_pixel.SelectedItem.ToString()); i++)
{ {
x_actual.Points.AddXY(i, _x[i]); x_actual.Points.AddXY(i, _x[i]);
} }
chart1.Series.Add(x_actual); chart_main.Series.Add(x_actual);
} }
// Bild Laden /*---------------------------------------------------
private void button3_Click(object sender, EventArgs e) * Load_btn_Click()
*
* loads a image from a file and stores all pixels in an array
*
*---------------------------------------------------*/
private void Load_btn_Click(object sender, EventArgs e)
{ {
OpenFileDialog openFileDialog = new OpenFileDialog(); OpenFileDialog openFileDialog = new OpenFileDialog();
if (openFileDialog.ShowDialog() == DialogResult.OK) if (openFileDialog.ShowDialog() == DialogResult.OK)
{ {
/* Catch a exception if any is raised */
try try
{ {
/* Loads file into a bitmap */
Bitmap img = new Bitmap(openFileDialog.FileName); Bitmap img = new Bitmap(openFileDialog.FileName);
pixel_array = new double[img.Width * img.Height]; pixel_array = new double[img.Width * img.Height];
@ -421,17 +556,35 @@ namespace NMLS_Graphisch
} }
} }
/* If NuberOfSamples is greater then 2147483591 its size is over
* the limit of C# possible indexes in an array, so we have to decrease
* the size of NumberOfSamples */
NumberOfSamples = (img.Width * img.Height) / 2; NumberOfSamples = (img.Width * img.Height) / 2;
comboBox2.Items.Add(NumberOfSamples);
if (NumberOfSamples > 2147483591 / 5)
NumberOfSamples = 2147483591 / 5;
for (int i = 1; i < 6; i++)
comboBox_pixel.Items.Add((int)(NumberOfSamples * 0.2 * i));
_x = pixel_array; _x = pixel_array;
w = new double[NumberOfSamples, NumberOfSamples];
/* Recreating the weights with the new size of NumberOfSamples */
w = new double[windowSize, NumberOfSamples];
for (int i = 0; i < NumberOfSamples; i++) for (int i = 0; i < NumberOfSamples; i++)
{ {
for (int k = 1; k < NumberOfSamples; k++) for (int k = 0; k < windowSize; k++)
{ {
w[k, i] = rnd.NextDouble(); w[k, i] = rnd.NextDouble();
} }
} }
/* Clearing the screen after loading the pixels to make the new graph occure */
Clear_btn_Click(new object(), new EventArgs());
} }
catch (Exception exep) catch (Exception exep)
{ {