added new stuff
This commit is contained in:
		
							parent
							
								
									136aab9ecf
								
							
						
					
					
						commit
						121955bc5a
					
				| 
						 | 
				
			
			@ -0,0 +1,774 @@
 | 
			
		|||
//
 | 
			
		||||
//
 | 
			
		||||
//  NLMSvariants.c
 | 
			
		||||
//
 | 
			
		||||
//  Created by FBRDNLMS on 26.04.18.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <time.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <float.h> // DBL_MAX
 | 
			
		||||
 | 
			
		||||
#define NUMBER_OF_SAMPLES 1000
 | 
			
		||||
#define WINDOWSIZE 5
 | 
			
		||||
#define tracking 40 //Count of weights
 | 
			
		||||
#define learnrate 0.8
 | 
			
		||||
#define PURE_WEIGHTS 0
 | 
			
		||||
#define USED_WEIGHTS 1
 | 
			
		||||
#define RESULTS 3
 | 
			
		||||
#define DIRECT_PREDECESSOR 2
 | 
			
		||||
#define LOCAL_MEAN 4
 | 
			
		||||
#define TEST_VALUES 5
 | 
			
		||||
#define DIFFERENTIAL_PREDECESSOR 6
 | 
			
		||||
#define RGB_COLOR 255
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#include <BaseTsd.h>
 | 
			
		||||
typedef SSIZE_T ssize_t;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
//double x[] = { 0.0 };
 | 
			
		||||
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
 | 
			
		||||
 | 
			
		||||
/* *svg graph building* */
 | 
			
		||||
typedef struct {
 | 
			
		||||
	double xVal[7];
 | 
			
		||||
	double yVal[7];
 | 
			
		||||
}point_t;
 | 
			
		||||
 | 
			
		||||
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
 | 
			
		||||
 | 
			
		||||
								   /* *ppm read, copy, write* */
 | 
			
		||||
typedef struct {
 | 
			
		||||
	unsigned char red, green, blue;
 | 
			
		||||
}colorChannel_t;
 | 
			
		||||
 | 
			
		||||
typedef struct {
 | 
			
		||||
	int x, y;
 | 
			
		||||
	colorChannel_t *data;
 | 
			
		||||
}imagePixel_t;
 | 
			
		||||
 | 
			
		||||
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
 | 
			
		||||
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
 | 
			
		||||
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
 | 
			
		||||
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
 | 
			
		||||
 | 
			
		||||
/* *file handling* */
 | 
			
		||||
char * mkFileName(char* buffer, size_t max_len, int suffixId);
 | 
			
		||||
char *fileSuffix(int id);
 | 
			
		||||
void myLogger(FILE* fp, point_t points[]);
 | 
			
		||||
void mkSvgGraph(point_t points[]);
 | 
			
		||||
//void weightsLogger(double *weights, int var);
 | 
			
		||||
/* *rand seed* */
 | 
			
		||||
double r2(void);
 | 
			
		||||
double rndm(void);
 | 
			
		||||
 | 
			
		||||
/* *math* */
 | 
			
		||||
double sum_array(double x[], int length);
 | 
			
		||||
void directPredecessor(double *weights);
 | 
			
		||||
void localMean(double *weights);
 | 
			
		||||
//void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
void differentialPredecessor(double *weights);
 | 
			
		||||
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
 | 
			
		||||
double windowXMean(int _arraylength, int xCount);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
    	double weights[WINDOWSIZE] =  { 0.0 };
 | 
			
		||||
//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
			
		||||
	char fileName[50];
 | 
			
		||||
	int i, xLength;	
 | 
			
		||||
	imagePixel_t *image;
 | 
			
		||||
 | 
			
		||||
	image = rdPPM("beaches.ppm");
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
			
		||||
	FILE* fp5 = fopen(fileName, "w");
 | 
			
		||||
	xLength = ppmColorChannel(fp5, image);
 | 
			
		||||
	printf("%d\n", xLength);
 | 
			
		||||
 | 
			
		||||
	FILE* fp6 = fopen(fileName, "r");
 | 
			
		||||
	colorSamples(fp6);
 | 
			
		||||
 | 
			
		||||
	srand((unsigned int)time(NULL));
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < WINDOWSIZE; i++) {
 | 
			
		||||
		//_x[i] += ((255.0 / M) * i); // Init test values
 | 
			
		||||
	//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			weights[i] = rndm(); // Init weights
 | 
			
		||||
	//	}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
			
		||||
	// save plain test_array before math magic happens
 | 
			
		||||
	FILE *fp0 = fopen(fileName, "w");
 | 
			
		||||
	for (i = 0; i < WINDOWSIZE; i++) {
 | 
			
		||||
//		for (k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			fprintf(fp0, "[%d]%lf\n", i, weights[i]);
 | 
			
		||||
		}
 | 
			
		||||
//	}
 | 
			
		||||
	fclose(fp0);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// math magic
 | 
			
		||||
/*	for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
			
		||||
       	 for (k = 0; k < WINDOWSIZE; k++){
 | 
			
		||||
            local_weights[k][i] = weights[k][i];
 | 
			
		||||
	    printf("ALT::%f\n", local_weights[k][i]);
 | 
			
		||||
        	}
 | 
			
		||||
	}*/
 | 
			
		||||
	localMean(weights);
 | 
			
		||||
//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
			
		||||
	directPredecessor(weights);
 | 
			
		||||
//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
			
		||||
	differentialPredecessor(weights);
 | 
			
		||||
	mkSvgGraph(points);
 | 
			
		||||
	// save test_array after math magic happened
 | 
			
		||||
	// memset( fileName, '\0', sizeof(fileName) );
 | 
			
		||||
/*	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
			
		||||
	FILE *fp1 = fopen(fileName, "w");
 | 
			
		||||
	for (i = 0; i < tracking; i++) {
 | 
			
		||||
		for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp1);
 | 
			
		||||
*/
 | 
			
		||||
	// getchar();
 | 
			
		||||
	printf("\nDONE!\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
localMean
 | 
			
		||||
 | 
			
		||||
Variant (1/3), substract local mean.
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void localMean(double *weights) {	
 | 
			
		||||
	double local_weights[WINDOWSIZE];
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE);
 | 
			
		||||
	char fileName[50];
 | 
			
		||||
	double xError[2048]; // includes e(n)
 | 
			
		||||
	memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
 | 
			
		||||
	int xCount = 0, i; // runtime var;
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
			
		||||
	FILE* fp4 = fopen(fileName, "w");
 | 
			
		||||
	fprintf(fp4, "\n=====================================LocalMean=====================================\n");
 | 
			
		||||
 | 
			
		||||
	double xMean = xSamples[0];	
 | 
			
		||||
	double xSquared = 0.0;
 | 
			
		||||
	double xPredicted = 0.0;
 | 
			
		||||
	double xActual = 0.0;
 | 
			
		||||
	
 | 
			
		||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
			
		||||
		//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
			
		||||
		//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
			
		||||
		int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
		//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
			
		||||
		xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
			
		||||
		// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
			
		||||
		xPredicted = 0.0;
 | 
			
		||||
		xActual = xSamples[xCount + 1];
 | 
			
		||||
		//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
			
		||||
			xPredicted += (local_weights[i] * (xSamples[xCount - i] - xMean));
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
		xPredicted += xMean;
 | 
			
		||||
		xError[xCount] = xActual - xPredicted;
 | 
			
		||||
		printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
			
		||||
		points[xCount].xVal[1] = xCount;
 | 
			
		||||
		points[xCount].yVal[1] = xPredicted;
 | 
			
		||||
		points[xCount].xVal[4] = xCount;
 | 
			
		||||
		points[xCount].yVal[4] = xError[xCount];
 | 
			
		||||
 | 
			
		||||
		xSquared = 0.0;
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
			
		||||
			xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
			
		||||
		//	printf("xSquared:%f\n", xSquared);
 | 
			
		||||
		}
 | 
			
		||||
		if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
			
		||||
			xSquared = 1.0;
 | 
			
		||||
		}
 | 
			
		||||
		//printf("%f\n", xSquared);
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) { //update weights
 | 
			
		||||
			local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
			
		||||
		//	printf("NEU::%lf\n", local_weights[i]);
 | 
			
		||||
		}
 | 
			
		||||
		fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
			
		||||
		
 | 
			
		||||
	}
 | 
			
		||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
	double deviation = 0.0;
 | 
			
		||||
 | 
			
		||||
	// Mean square
 | 
			
		||||
	for (i = 0; i < xErrorLength - 1; i++) {
 | 
			
		||||
		deviation += pow(xError[i] - mean, 2);
 | 
			
		||||
	}
 | 
			
		||||
	deviation /= xErrorLength;
 | 
			
		||||
 | 
			
		||||
	// write in file
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
			
		||||
	FILE *fp2 = fopen(fileName, "w");
 | 
			
		||||
	fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
 | 
			
		||||
	fclose(fp2);
 | 
			
		||||
	fclose(fp4);
 | 
			
		||||
	
 | 
			
		||||
//	weightsLogger( local_weights, USED_WEIGHTS );
 | 
			
		||||
	//mkSvgGraph(points);
 | 
			
		||||
	
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
directPredecessor
 | 
			
		||||
 | 
			
		||||
Variant (2/3),
 | 
			
		||||
substract direct predecessor
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void directPredecessor(double *weights) {
 | 
			
		||||
	double local_weights[WINDOWSIZE];
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	double xError[2048];
 | 
			
		||||
	int xCount = 0, i;
 | 
			
		||||
	double xActual = 0.0;
 | 
			
		||||
	double xPredicted = 0.0;
 | 
			
		||||
	// File handling
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
			
		||||
	FILE *fp3 = fopen(fileName, "w");
 | 
			
		||||
	fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
			
		||||
		//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
			
		||||
								   //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
			
		||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
		//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
			
		||||
		// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
			
		||||
		xPredicted = 0.0;
 | 
			
		||||
		xActual = xSamples[xCount + 1];
 | 
			
		||||
		//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			xPredicted += (local_weights[i] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
 | 
			
		||||
		}
 | 
			
		||||
		xPredicted += xSamples[xCount - 1];
 | 
			
		||||
		xError[xCount] = xActual - xPredicted;
 | 
			
		||||
 | 
			
		||||
		fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
			
		||||
		points[xCount].xVal[2] = xCount;
 | 
			
		||||
		points[xCount].yVal[2] = xPredicted;
 | 
			
		||||
		points[xCount].xVal[5] = xCount;
 | 
			
		||||
		points[xCount].yVal[5] = xError[xCount];
 | 
			
		||||
 | 
			
		||||
		double xSquared = 0.0;
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
			
		||||
		}
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
	double deviation = 0.0;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < xErrorLength - 1; i++) {
 | 
			
		||||
		deviation += pow(xError[i] - mean, 2);
 | 
			
		||||
	}
 | 
			
		||||
	deviation /= xErrorLength;
 | 
			
		||||
 | 
			
		||||
//	mkSvgGraph(points);
 | 
			
		||||
	fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
			
		||||
 | 
			
		||||
	fclose(fp3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
differentialPredecessor
 | 
			
		||||
 | 
			
		||||
variant (3/3),
 | 
			
		||||
differenital predecessor.
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
void differentialPredecessor(double *weights) {
 | 
			
		||||
	double local_weights[WINDOWSIZE];
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	double xError[2048];
 | 
			
		||||
	int xCount = 0, i;
 | 
			
		||||
	double xPredicted = 0.0;
 | 
			
		||||
	double xActual = 0.0;
 | 
			
		||||
 | 
			
		||||
	// File handling
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
			
		||||
	FILE *fp6 = fopen(fileName, "w");
 | 
			
		||||
	fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
 | 
			
		||||
 | 
			
		||||
		for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
			
		||||
		xActual = xSamples[xCount +1];	
 | 
			
		||||
		xPredicted = 0.0;
 | 
			
		||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			xPredicted += (local_weights[i] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
 | 
			
		||||
		}
 | 
			
		||||
		xPredicted += xSamples[xCount - 1];
 | 
			
		||||
		xError[xCount] = xActual - xPredicted;
 | 
			
		||||
 | 
			
		||||
		fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xSamples[xCount], xError[xCount]);
 | 
			
		||||
		points[xCount].xVal[3] = xCount;
 | 
			
		||||
		points[xCount].yVal[3] = xPredicted;
 | 
			
		||||
		points[xCount].xVal[6] = xCount;
 | 
			
		||||
		points[xCount].yVal[6] = xError[xCount];
 | 
			
		||||
		double xSquared = 0.0;
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
			
		||||
		}
 | 
			
		||||
		if (xSquared == 0.0 ){
 | 
			
		||||
			xSquared = 1.0;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
			printf("NEU::%lf\n", local_weights[i]);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
	double deviation = 0.0;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < xErrorLength - 1; i++) {
 | 
			
		||||
		deviation += pow(xError[i] - mean, 2);
 | 
			
		||||
	}
 | 
			
		||||
	deviation /= xErrorLength;
 | 
			
		||||
 | 
			
		||||
	//mkSvgGraph(points);
 | 
			
		||||
	fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
			
		||||
 | 
			
		||||
	fclose(fp6);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
mkFileName
 | 
			
		||||
 | 
			
		||||
Writes the current date plus the suffix with index suffixId
 | 
			
		||||
into the given buffer. If the total length is longer than max_len,
 | 
			
		||||
only max_len characters will be written.
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
			
		||||
	const char * format_str = "%Y-%m-%d_%H_%M_%S";
 | 
			
		||||
	size_t date_len;
 | 
			
		||||
	const char * suffix = fileSuffix(suffixId);
 | 
			
		||||
	time_t now = time(NULL);
 | 
			
		||||
 | 
			
		||||
	strftime(buffer, max_len, format_str, localtime(&now));
 | 
			
		||||
	date_len = strlen(buffer);
 | 
			
		||||
	strncat(buffer, suffix, max_len - date_len);
 | 
			
		||||
	return buffer;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
fileSuffix
 | 
			
		||||
 | 
			
		||||
Contains and returns every suffix for all existing filenames
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
char * fileSuffix(int id) {
 | 
			
		||||
	char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
 | 
			
		||||
	return suffix[id];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
myLogger
 | 
			
		||||
 | 
			
		||||
Logs x,y points to svg graph
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
/*
 | 
			
		||||
void weightsLogger (double weights[WINDOWSIZE], int val ) {
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	int i;
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), val);
 | 
			
		||||
	FILE* fp = fopen(fileName, "wa");
 | 
			
		||||
	for (i = 0; i < WINDOWSIZE; i++) {
 | 
			
		||||
	//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			fprintf(fp, "[%d]%lf\n", i, weights[i]);
 | 
			
		||||
	//	}
 | 
			
		||||
	}
 | 
			
		||||
	fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
*/	
 | 
			
		||||
 | 
			
		||||
void bufferLogger(char *buffer, point_t points[]) {
 | 
			
		||||
	int i;
 | 
			
		||||
	char _buffer[512] = "";
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
 | 
			
		||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
			
		||||
		strcat(buffer, _buffer);
 | 
			
		||||
	}
 | 
			
		||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
			
		||||
	for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
 | 
			
		||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
			
		||||
		strcat(buffer, _buffer);
 | 
			
		||||
	}
 | 
			
		||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
			
		||||
	for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
 | 
			
		||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
			
		||||
		strcat(buffer, _buffer);
 | 
			
		||||
	}
 | 
			
		||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
			
		||||
	for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
 | 
			
		||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
 | 
			
		||||
		strcat(buffer, _buffer);
 | 
			
		||||
	}
 | 
			
		||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
sum_array
 | 
			
		||||
 | 
			
		||||
Sum of all elements in x within a defined length
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
double sum_array(double x[], int xlength) {
 | 
			
		||||
	int i = 0;
 | 
			
		||||
	double sum = 0.0;
 | 
			
		||||
 | 
			
		||||
	if (xlength != 0) {
 | 
			
		||||
		for (i = 0; i < xlength; i++) {
 | 
			
		||||
			sum += x[i];
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return sum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
popNanLength
 | 
			
		||||
 | 
			
		||||
returns length of new array without NAN values
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
double *popNAN(double *xError, int xErrorLength) {
 | 
			
		||||
	int i, counter;
 | 
			
		||||
	double *tmp = NULL;
 | 
			
		||||
	double *more_tmp = NULL;
 | 
			
		||||
 	//tmp = realloc( noNAN, xErrorLength * sizeof(double) );
 | 
			
		||||
 | 
			
		||||
	for ( i = 0; i < xErrorLength; i++ ) {
 | 
			
		||||
		counter ++;
 | 
			
		||||
		more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
 | 
			
		||||
			if ( !isnan(xError[i]) ) {
 | 
			
		||||
				tmp = more_tmp;
 | 
			
		||||
				tmp[counter - 1] = xError[i];
 | 
			
		||||
				 
 | 
			
		||||
			}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
/*	for (i = 0; i < xErrorLength; i++) {
 | 
			
		||||
		if (!isnan(xError[i])) {
 | 
			
		||||
			tmp[i] = xError[i];
 | 
			
		||||
			counter++;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
*/
 | 
			
		||||
	//realloc(noNAN, counter * sizeof(double));
 | 
			
		||||
	//int tmpLength = sizeof(noNAN) / sizeof(noNAN[0]);
 | 
			
		||||
	//memcpy(xError, tmp, tmpLength);
 | 
			
		||||
	//return xError;
 | 
			
		||||
	return tmp;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
r2
 | 
			
		||||
 | 
			
		||||
returns a random double value between 0 and 1
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
double r2(void) {
 | 
			
		||||
	return((rand() % 10000) / 10000.0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
rndm
 | 
			
		||||
 | 
			
		||||
fills a double variable with random value and returns it
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
double rndm(void) {
 | 
			
		||||
	double rndmval = r2();
 | 
			
		||||
	return rndmval;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
mkSvgGraph
 | 
			
		||||
 | 
			
		||||
parses template.svg and writes results in said template
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void mkSvgGraph(point_t points[]) {
 | 
			
		||||
	FILE *input = fopen("graphResults_template.html", "r");
 | 
			
		||||
	FILE *target = fopen("graphResults.html", "w");
 | 
			
		||||
	char line[512];
 | 
			
		||||
	char firstGraph[15] = { "<path d=\"M0 0" };
 | 
			
		||||
 | 
			
		||||
	if (input == NULL) {
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	char buffer[131072] = "";
 | 
			
		||||
 | 
			
		||||
	memset(buffer, '\0', sizeof(buffer));
 | 
			
		||||
	while (!feof(input)) {
 | 
			
		||||
		fgets(line, 512, input);
 | 
			
		||||
		strncat(buffer, line, strlen(line));
 | 
			
		||||
		//	printf("%s\n", line);
 | 
			
		||||
		if (strstr(line, firstGraph) != NULL) {
 | 
			
		||||
			bufferLogger(buffer, points);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
	fprintf(target, buffer);
 | 
			
		||||
	//puts(buffer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
rdPPM
 | 
			
		||||
 | 
			
		||||
reads data from file of type PPM, stores colorchannels in a struct in the
 | 
			
		||||
size of given picture
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
static imagePixel_t *rdPPM(char *fileName) {
 | 
			
		||||
	char buffer[16];
 | 
			
		||||
	imagePixel_t *image;
 | 
			
		||||
	int c, rgbColor;
 | 
			
		||||
 | 
			
		||||
	FILE *fp = fopen(fileName, "rb");
 | 
			
		||||
	if (!fp) {
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	if (!fgets(buffer, sizeof(buffer), fp)) {
 | 
			
		||||
		perror(fileName);
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	if (buffer[0] != 'P' || buffer[1] != '6') {
 | 
			
		||||
		fprintf(stderr, "No PPM file format\n");
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
 | 
			
		||||
	if (!image) {
 | 
			
		||||
		fprintf(stderr, "malloc() failed");
 | 
			
		||||
	}
 | 
			
		||||
	c = getc(fp);
 | 
			
		||||
	while (c == '#') {
 | 
			
		||||
		while (getc(fp) != '\n');
 | 
			
		||||
		c = getc(fp);
 | 
			
		||||
	}
 | 
			
		||||
	ungetc(c, fp);
 | 
			
		||||
	if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
 | 
			
		||||
		fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	if (fscanf(fp, "%d", &rgbColor) != 1) {
 | 
			
		||||
		fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
			
		||||
	}
 | 
			
		||||
	if (rgbColor != RGB_COLOR) {
 | 
			
		||||
		fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	while (fgetc(fp) != '\n');
 | 
			
		||||
	image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
			
		||||
	if (!image) {
 | 
			
		||||
		fprintf(stderr, "malloc() failed");
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
 | 
			
		||||
		fprintf(stderr, "Loading image failed");
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
	return image;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
mkPpmFile
 | 
			
		||||
 | 
			
		||||
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
 | 
			
		||||
carbon copy of the source image. Build for debugging
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void mkPpmFile(char *fileName, imagePixel_t *image) {
 | 
			
		||||
	FILE* fp = fopen(fileName, "wb");
 | 
			
		||||
	if (!fp) {
 | 
			
		||||
		fprintf(stderr, "Opening file failed.");
 | 
			
		||||
		exit(EXIT_FAILURE);
 | 
			
		||||
	}
 | 
			
		||||
	fprintf(fp, "P6\n");
 | 
			
		||||
	fprintf(fp, "%d %d\n", image->x, image->y);
 | 
			
		||||
	fprintf(fp, "%d\n", RGB_COLOR);
 | 
			
		||||
	fwrite(image->data, 3 * image->x, image->y, fp);
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
ppmColorChannel
 | 
			
		||||
 | 
			
		||||
gets one of the rgb color channels and writes them to a file
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
 | 
			
		||||
	//	int length = 1000; // (image->x * image->y) / 3;
 | 
			
		||||
	int i = 0;
 | 
			
		||||
 | 
			
		||||
	if (image) {
 | 
			
		||||
		for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
 | 
			
		||||
			fprintf(fp, "%d\n", image->data[i].green);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
	return NUMBER_OF_SAMPLES;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
======================================================================================================
 | 
			
		||||
 | 
			
		||||
colorSamples
 | 
			
		||||
 | 
			
		||||
reads colorChannel values from file and stores them in xSamples as well as points datatype for
 | 
			
		||||
creating the SVG graph
 | 
			
		||||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
void colorSamples(FILE* fp) {
 | 
			
		||||
	int i = 0;	
 | 
			
		||||
	char  buffer[NUMBER_OF_SAMPLES];
 | 
			
		||||
 | 
			
		||||
	while (!feof(fp)) {
 | 
			
		||||
		if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
 | 
			
		||||
			sscanf(buffer, "%lf", &xSamples[i]);
 | 
			
		||||
			//printf("%lf\n", xSamples[i] );
 | 
			
		||||
			points[i].yVal[0] = xSamples[i];
 | 
			
		||||
			points[i].xVal[0] = i;
 | 
			
		||||
			++i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double windowXMean(int _arraylength, int xCount) {
 | 
			
		||||
	double sum = 0.0;
 | 
			
		||||
	double *ptr;
 | 
			
		||||
	// printf("*window\t\t*base\t\txMean\n\n");
 | 
			
		||||
	for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
 | 
			
		||||
	//window = xCount - _arraylength
 | 
			
		||||
	//base = window - _arraylength;
 | 
			
		||||
	//sum = 0.0;
 | 
			
		||||
	//for( count = 0; count < _arraylength; count++){
 | 
			
		||||
	sum += *ptr;
 | 
			
		||||
	//	printf("%f\n", *base);
 | 
			
		||||
 | 
			
		||||
		//}
 | 
			
		||||
	}
 | 
			
		||||
	//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
 | 
			
		||||
	return sum / (double)_arraylength;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -13,7 +13,7 @@
 | 
			
		|||
#include <string.h>
 | 
			
		||||
#include <float.h> // DBL_MAX
 | 
			
		||||
 | 
			
		||||
#define NUMBER_OF_SAMPLES 1000
 | 
			
		||||
#define NUMBER_OF_SAMPLES 500
 | 
			
		||||
#define WINDOWSIZE 5
 | 
			
		||||
#define tracking 40 //Count of weights
 | 
			
		||||
#define learnrate 0.8
 | 
			
		||||
| 
						 | 
				
			
			@ -33,8 +33,6 @@ typedef SSIZE_T ssize_t;
 | 
			
		|||
//double x[] = { 0.0 };
 | 
			
		||||
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* *svg graph building* */
 | 
			
		||||
typedef struct {
 | 
			
		||||
	double xVal[7];
 | 
			
		||||
| 
						 | 
				
			
			@ -58,35 +56,35 @@ void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
 | 
			
		|||
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
 | 
			
		||||
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
 | 
			
		||||
 | 
			
		||||
							 /* *file handling* */
 | 
			
		||||
/* *file handling* */
 | 
			
		||||
char * mkFileName(char* buffer, size_t max_len, int suffixId);
 | 
			
		||||
char *fileSuffix(int id);
 | 
			
		||||
void myLogger(FILE* fp, point_t points[]);
 | 
			
		||||
void mkSvgGraph(point_t points[]);
 | 
			
		||||
 | 
			
		||||
//void weightsLogger(double *weights, int var);
 | 
			
		||||
/* *rand seed* */
 | 
			
		||||
double r2(void);
 | 
			
		||||
double rndm(void);
 | 
			
		||||
 | 
			
		||||
/* *math* */
 | 
			
		||||
double sum_array(double x[], int length);
 | 
			
		||||
void directPredecessor(double localweights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
void localMean(double localweights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
void differentialPredecessor(double localweights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
 | 
			
		||||
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
			
		||||
//void differentialPredecessor(double *weights);
 | 
			
		||||
double *popNAN(double *xError); //return new array without NAN values
 | 
			
		||||
double windowXMean(int _arraylength, int xCount);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
    double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
 | 
			
		||||
	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
			
		||||
//int main(int argc, char **argv) {
 | 
			
		||||
int main( void ) {
 | 
			
		||||
    	double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
 | 
			
		||||
//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
			
		||||
	char fileName[50];
 | 
			
		||||
	int i, k, xLength;
 | 
			
		||||
	int *colorChannel;
 | 
			
		||||
	int i,k, xLength;	
 | 
			
		||||
	imagePixel_t *image;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	image = rdPPM("cow.ppm");
 | 
			
		||||
	image = rdPPM("beaches.ppm");
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
			
		||||
	FILE* fp5 = fopen(fileName, "w");
 | 
			
		||||
	xLength = ppmColorChannel(fp5, image);
 | 
			
		||||
| 
						 | 
				
			
			@ -98,47 +96,39 @@ int main(int argc, char **argv) {
 | 
			
		|||
	srand((unsigned int)time(NULL));
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
			
		||||
		//		_x[i] += ((255.0 / M) * i); // Init test values
 | 
			
		||||
		//_x[i] += ((255.0 / M) * i); // Init test values
 | 
			
		||||
		for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			w[k][i] = rndm(); // Init weights
 | 
			
		||||
			weights[k][i] = rndm(); // Init weights
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
			
		||||
	// save plain test_array before math magic happens
 | 
			
		||||
	FILE *fp0 = fopen(fileName, "w");
 | 
			
		||||
	for (i = 0; i <= tracking; i++) {
 | 
			
		||||
	for (i = 0; i < tracking; i++) {
 | 
			
		||||
		for (k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
 | 
			
		||||
			fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp0);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	// math magic
 | 
			
		||||
	for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
			
		||||
        for (k = 0; k < WINDOWSIZE; k++){
 | 
			
		||||
            local_weights[k][i] = w[k][i];
 | 
			
		||||
        }
 | 
			
		||||
	}
 | 
			
		||||
	localMean(local_weights);
 | 
			
		||||
 | 
			
		||||
		for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
			
		||||
        for (k = 0; k < WINDOWSIZE; k++){
 | 
			
		||||
            local_weights[k][i] = w[k][i];
 | 
			
		||||
        }
 | 
			
		||||
	}
 | 
			
		||||
	//directPredecessor(local_weights);
 | 
			
		||||
		for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
			
		||||
        for (k = 0; k < WINDOWSIZE; k++){
 | 
			
		||||
            local_weights[k][i] = w[k][i];
 | 
			
		||||
        }
 | 
			
		||||
	}
 | 
			
		||||
	//differentialPredecessor(local_weights);
 | 
			
		||||
/*	for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
			
		||||
       	 for (k = 0; k < WINDOWSIZE; k++){
 | 
			
		||||
            local_weights[k][i] = weights[k][i];
 | 
			
		||||
	    printf("ALT::%f\n", local_weights[k][i]);
 | 
			
		||||
        	}
 | 
			
		||||
	}*/
 | 
			
		||||
	localMean(weights);
 | 
			
		||||
//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
			
		||||
//	directPredecessor(weights);
 | 
			
		||||
//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
			
		||||
//	differentialPredecessor(weights);
 | 
			
		||||
	mkSvgGraph(points);
 | 
			
		||||
	// save test_array after math magic happened
 | 
			
		||||
	// memset( fileName, '\0', sizeof(fileName) );
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
			
		||||
/*	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
			
		||||
	FILE *fp1 = fopen(fileName, "w");
 | 
			
		||||
	for (i = 0; i < tracking; i++) {
 | 
			
		||||
		for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
| 
						 | 
				
			
			@ -147,10 +137,9 @@ int main(int argc, char **argv) {
 | 
			
		|||
 | 
			
		||||
	}
 | 
			
		||||
	fclose(fp1);
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
	// getchar();
 | 
			
		||||
	printf("DONE!");
 | 
			
		||||
 | 
			
		||||
	printf("\nDONE!\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -164,8 +153,11 @@ Variant (1/3), substract local mean.
 | 
			
		|||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void localMean(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		||||
 | 
			
		||||
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {	
 | 
			
		||||
	//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
			
		||||
	double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
			
		||||
//	double *local_weights[WINDOWSIZE];
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
			
		||||
	char fileName[50];
 | 
			
		||||
	double xError[2048]; // includes e(n)
 | 
			
		||||
	memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
 | 
			
		||||
| 
						 | 
				
			
			@ -175,17 +167,14 @@ void localMean(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
	fprintf(fp4, "\n=====================================LocalMean=====================================\n");
 | 
			
		||||
 | 
			
		||||
	double xMean = xSamples[0];	
 | 
			
		||||
	double weightedSum = 0.0;
 | 
			
		||||
	double filterOutput = 0.0;
 | 
			
		||||
	double xSquared = 0.0;
 | 
			
		||||
	double xPredicted = 0.0;
 | 
			
		||||
	double xActual = 0.0;
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
			
		||||
		//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
			
		||||
								   //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
			
		||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
		//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
			
		||||
		int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
		//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
			
		||||
		xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
			
		||||
		// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
			
		||||
| 
						 | 
				
			
			@ -199,7 +188,7 @@ void localMean(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
		}
 | 
			
		||||
		xPredicted += xMean;
 | 
			
		||||
		xError[xCount] = xActual - xPredicted;
 | 
			
		||||
		printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
			
		||||
	//	printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
			
		||||
		points[xCount].xVal[1] = xCount;
 | 
			
		||||
		points[xCount].yVal[1] = xPredicted;
 | 
			
		||||
		points[xCount].xVal[4] = xCount;
 | 
			
		||||
| 
						 | 
				
			
			@ -207,31 +196,32 @@ void localMean(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
 | 
			
		||||
		xSquared = 0.0;
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
			
		||||
											 //xSquared += pow(xSamples[xCount - i], 2);
 | 
			
		||||
			xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
			
		||||
			printf("xSquared:%f\n", xSquared);
 | 
			
		||||
		//	printf("xSquared:%f\n", xSquared);
 | 
			
		||||
		}
 | 
			
		||||
		if (xSquared == 0.0) { // returns Pred: -1.#IND00
 | 
			
		||||
		if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
			
		||||
			xSquared = 1.0;
 | 
			
		||||
		}
 | 
			
		||||
		//printf("%f\n", xSquared);
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) { //update weights
 | 
			
		||||
			local_weights[i][xCount + 1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
			
		||||
			local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
			
		||||
		//	printf("NEU::%lf\n", local_weights[i][xCount]);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
/*	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
//	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
//	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError); // delete NAN values from xError[]
 | 
			
		||||
//	printf("%lf", xError[499]);
 | 
			
		||||
	double  xErrorLength = xError[0]; // Watch popNAN()!
 | 
			
		||||
	printf("Xerrorl:%lf", xErrorLength);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
	double deviation = 0.0;
 | 
			
		||||
 | 
			
		||||
	// Mean square
 | 
			
		||||
	for (i = 0; i < xErrorLength - 1; i++) {
 | 
			
		||||
	for (i = 1; i < xErrorLength; i++) {
 | 
			
		||||
		deviation += pow(xError[i] - mean, 2);
 | 
			
		||||
	}
 | 
			
		||||
	deviation /= xErrorLength;
 | 
			
		||||
| 
						 | 
				
			
			@ -241,9 +231,12 @@ void localMean(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
	FILE *fp2 = fopen(fileName, "w");
 | 
			
		||||
	fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
 | 
			
		||||
	fclose(fp2);
 | 
			
		||||
	free(local_weights);
 | 
			
		||||
	fclose(fp4);
 | 
			
		||||
	*/
 | 
			
		||||
	//mkSvgGraph(points);
 | 
			
		||||
	
 | 
			
		||||
//	weightsLogger( local_weights, USED_WEIGHTS );
 | 
			
		||||
	mkSvgGraph(points);
 | 
			
		||||
	
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			@ -257,12 +250,16 @@ substract direct predecessor
 | 
			
		|||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void directPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		||||
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		||||
	double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
			
		||||
 | 
			
		||||
//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	double xError[2048];
 | 
			
		||||
	int xCount = 0, i;
 | 
			
		||||
	double xActual = 0.0;
 | 
			
		||||
	int xPredicted = 0.0;
 | 
			
		||||
	double xPredicted = 0.0;
 | 
			
		||||
	// File handling
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
			
		||||
	FILE *fp3 = fopen(fileName, "w");
 | 
			
		||||
| 
						 | 
				
			
			@ -297,13 +294,13 @@ void directPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
			xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
			
		||||
		}
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			local_weights[i][xCount + 1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
			local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
/*
 | 
			
		||||
 | 
			
		||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	popNAN(xError);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
| 
						 | 
				
			
			@ -316,7 +313,7 @@ void directPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		|||
 | 
			
		||||
//	mkSvgGraph(points);
 | 
			
		||||
	fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
			
		||||
	*/
 | 
			
		||||
 | 
			
		||||
	fclose(fp3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -331,8 +328,11 @@ differenital predecessor.
 | 
			
		|||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
void differentialPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		||||
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
			
		||||
//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];	
 | 
			
		||||
	double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
			
		||||
 | 
			
		||||
	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	double xError[2048];
 | 
			
		||||
	int xCount = 0, i;
 | 
			
		||||
| 
						 | 
				
			
			@ -347,7 +347,8 @@ void differentialPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]
 | 
			
		|||
		for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
			
		||||
 | 
			
		||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
			
		||||
		double xPredicted = 0.0;
 | 
			
		||||
		xPredicted = 0.0;
 | 
			
		||||
		xActual = xSamples[xCount + 1];
 | 
			
		||||
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
 | 
			
		||||
| 
						 | 
				
			
			@ -366,13 +367,13 @@ void differentialPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]
 | 
			
		|||
			xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
			
		||||
		}
 | 
			
		||||
		for (i = 1; i < _arrayLength; i++) {
 | 
			
		||||
			local_weights[i][xCount + 1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
			local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
/*
 | 
			
		||||
 | 
			
		||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	printf("vor:%d", xErrorLength);
 | 
			
		||||
	popNAN(xError, xErrorLength);
 | 
			
		||||
	popNAN(xError);
 | 
			
		||||
	printf("nach:%d", xErrorLength);
 | 
			
		||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
			
		||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
			
		||||
| 
						 | 
				
			
			@ -385,7 +386,7 @@ void differentialPredecessor(double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES]
 | 
			
		|||
 | 
			
		||||
	//mkSvgGraph(points);
 | 
			
		||||
	fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
	fclose(fp6);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -443,6 +444,22 @@ Logs x,y points to svg graph
 | 
			
		|||
 | 
			
		||||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
void weightsLogger (double weights[WINDOWSIZE], int val ) {
 | 
			
		||||
	char fileName[512];
 | 
			
		||||
	int i;
 | 
			
		||||
	mkFileName(fileName, sizeof(fileName), val);
 | 
			
		||||
	FILE* fp = fopen(fileName, "wa");
 | 
			
		||||
	for (i = 0; i < WINDOWSIZE; i++) {
 | 
			
		||||
	//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
			
		||||
			fprintf(fp, "[%d]%lf\n", i, weights[i]);
 | 
			
		||||
	//	}
 | 
			
		||||
	}
 | 
			
		||||
	fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
 | 
			
		||||
	fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
void bufferLogger(char *buffer, point_t points[]) {
 | 
			
		||||
	int i;
 | 
			
		||||
	char _buffer[512] = "";
 | 
			
		||||
| 
						 | 
				
			
			@ -503,21 +520,32 @@ returns length of new array without NAN values
 | 
			
		|||
======================================================================================================
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
double *popNAN(double *xError, int xErrorLength) {
 | 
			
		||||
	int i, counter;
 | 
			
		||||
	double noNAN[10];
 | 
			
		||||
	realloc(noNAN, xErrorLength);
 | 
			
		||||
double *popNAN(double *xError) {
 | 
			
		||||
	int i, counter = 1; 
 | 
			
		||||
	double tmpLength = 0.0;
 | 
			
		||||
	double *tmp = NULL;
 | 
			
		||||
	double *more_tmp = NULL;
 | 
			
		||||
	
 | 
			
		||||
	for (i = 0; i < xErrorLength; i++) {
 | 
			
		||||
		if (!isnan(xError[i])) {
 | 
			
		||||
			noNAN[i] = xError[i];
 | 
			
		||||
			counter++;
 | 
			
		||||
		}
 | 
			
		||||
//	printf("LENGTH: %d", xErrorLength);
 | 
			
		||||
 | 
			
		||||
	for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
 | 
			
		||||
		counter ++;
 | 
			
		||||
		more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
 | 
			
		||||
			if ( !isnan(xError[i]) ) {
 | 
			
		||||
				tmp = more_tmp;
 | 
			
		||||
				tmp[counter - 1] = xError[i];
 | 
			
		||||
				printf("xERROR:%lf\n", tmp[counter - 1]);
 | 
			
		||||
				tmpLength++; 
 | 
			
		||||
			}
 | 
			
		||||
	}
 | 
			
		||||
	realloc(noNAN, counter * sizeof(double));
 | 
			
		||||
	int noNANLength = sizeof(noNAN) / sizeof(noNAN[0]);
 | 
			
		||||
	memcpy(xError, noNAN, noNANLength);
 | 
			
		||||
	return xError;
 | 
			
		||||
	counter += 1;
 | 
			
		||||
	more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
			
		||||
	tmp = more_tmp;
 | 
			
		||||
	tmp = &tmpLength; // Length of array has to be stored in tmp[0], 
 | 
			
		||||
				    // Cause length is needed later on in the math functions.
 | 
			
		||||
				    // xError counting has to begin with 1 in the other functions !
 | 
			
		||||
	printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
 | 
			
		||||
	return tmp;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			@ -562,8 +590,8 @@ parses template.svg and writes results in said template
 | 
			
		|||
*/
 | 
			
		||||
 | 
			
		||||
void mkSvgGraph(point_t points[]) {
 | 
			
		||||
	FILE *input = fopen("GraphResults_template.html", "r");
 | 
			
		||||
	FILE *target = fopen("GraphResults.html", "w");
 | 
			
		||||
	FILE *input = fopen("graphResults_template.html", "r");
 | 
			
		||||
	FILE *target = fopen("graphResults.html", "w");
 | 
			
		||||
	char line[512];
 | 
			
		||||
	char firstGraph[15] = { "<path d=\"M0 0" };
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -713,8 +741,6 @@ creating the SVG graph
 | 
			
		|||
*/
 | 
			
		||||
void colorSamples(FILE* fp) {
 | 
			
		||||
	int i = 0;	
 | 
			
		||||
	int d, out;
 | 
			
		||||
	double f;
 | 
			
		||||
	char  buffer[NUMBER_OF_SAMPLES];
 | 
			
		||||
 | 
			
		||||
	while (!feof(fp)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -730,20 +756,21 @@ void colorSamples(FILE* fp) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
double windowXMean(int _arraylength, int xCount) {
 | 
			
		||||
	int count;
 | 
			
		||||
	double sum = 0.0;
 | 
			
		||||
	double *ptr;
 | 
			
		||||
	// printf("*window\t\t*base\t\txMean\n\n");
 | 
			
		||||
	for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
 | 
			
		||||
																					//window = xCount - _arraylength
 | 
			
		||||
																					//base = window - _arraylength;
 | 
			
		||||
																					//sum = 0.0;
 | 
			
		||||
																					//for( count = 0; count < _arraylength; count++){
 | 
			
		||||
		sum += *ptr;
 | 
			
		||||
		//	printf("%f\n", *base);
 | 
			
		||||
	//window = xCount - _arraylength
 | 
			
		||||
	//base = window - _arraylength;
 | 
			
		||||
	//sum = 0.0;
 | 
			
		||||
	//for( count = 0; count < _arraylength; count++){
 | 
			
		||||
	sum += *ptr;
 | 
			
		||||
	//	printf("%f\n", *base);
 | 
			
		||||
 | 
			
		||||
		//}
 | 
			
		||||
	}
 | 
			
		||||
	//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
 | 
			
		||||
	return sum / (double)_arraylength;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue