Merge branch 'master' of https://github.com/FBRDNLMS/NLMSvariants
This commit is contained in:
commit
1a9b1191b9
|
@ -0,0 +1,287 @@
|
|||
//
|
||||
//
|
||||
// NLMSvariants.c
|
||||
//
|
||||
// Created by FBRDNLMS on 26.04.18.
|
||||
// Copyright © 2018 FBRDNLMS. All rights reserved.
|
||||
//
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define M 1000
|
||||
#define tracking 40 //Count of weights
|
||||
#define learnrate 1.0
|
||||
#define WGHTS 1
|
||||
#define WGHTSFTR 2
|
||||
#define RES 3
|
||||
#define DRCTPRD 4
|
||||
|
||||
double x[] ={0};
|
||||
double _x[M] = {0};
|
||||
double w [M][M]={{0},{0}};
|
||||
|
||||
const char *fileName(int id);
|
||||
double r2(void);
|
||||
double rnd(void);
|
||||
double sum_array(double x[], int length);
|
||||
void direkterVorgaenger(void);
|
||||
void lokalerMittelWert(void);
|
||||
|
||||
|
||||
int main(int argc, char **argv ) {
|
||||
|
||||
//init test_array, fill in weights by random
|
||||
int i;
|
||||
// srand(NULL);
|
||||
for (i = 0; i < M; i++) {
|
||||
_x[i] += ((255.0 / M) * i);
|
||||
for (int k = 1; k < M; k++)
|
||||
{
|
||||
w[k][i] = rnd();
|
||||
}
|
||||
}
|
||||
|
||||
// save plain test_array before math magic happened
|
||||
FILE *fp0 = fopen(fileName(WGHTS),"wb+");
|
||||
for (i = 0; i < tracking; i++){
|
||||
for ( int k = 1; k < tracking; k++ ){
|
||||
fprintf(fp0, "[%f][%f] %.2f\n", k, i, w[k][i]);
|
||||
}
|
||||
}
|
||||
fclose(fp0);
|
||||
|
||||
|
||||
// math magic
|
||||
direkterVorgaenger();
|
||||
|
||||
|
||||
// save test_array after math magic happened
|
||||
FILE *fp1 = fopen(fileName(WGHTSFTR),"wb+");
|
||||
for (i = 0; i < tracking; i++) {
|
||||
for (int k = 1; k < tracking; k++) {
|
||||
fprintf(fp1, "[%f][%f] %.2f\n", k,i, w[k][i]);
|
||||
}
|
||||
|
||||
}
|
||||
fclose(fp1);
|
||||
|
||||
getchar();
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
lokalerMittelwert()
|
||||
|
||||
|
||||
Variant (1/3),
|
||||
substract local mean
|
||||
|
||||
===================================
|
||||
*/
|
||||
|
||||
void lokalerMittelWert() {
|
||||
|
||||
double xError[M]; // includes e(n)
|
||||
memset(xError, 0, M);// initialize xError-array with Zero
|
||||
int xCount = 0; // runtime var
|
||||
int i;
|
||||
|
||||
|
||||
for (xCount = 1; xCount < M; xCount++){ // x_cout can not be zero
|
||||
|
||||
//double xPartArray[xCount]; //includes all values at the size of runtime var
|
||||
|
||||
double xMean = (xCount > 0) ? ( sum_array(_x, xCount) / xCount) : 0;
|
||||
|
||||
double xPredicted = 0.0;
|
||||
double xActual = _x[xCount + 1];
|
||||
|
||||
for ( i = 1; i < xCount; i++ ){ //get predicted value
|
||||
xPredicted += (w[i][xCount] * (_x[xCount - i] - xMean)) ;
|
||||
}
|
||||
|
||||
xPredicted += xMean;
|
||||
xError [xCount] = xActual - xPredicted;
|
||||
|
||||
double xSquared = 0.0;
|
||||
|
||||
for ( i = 1; i < xCount; i++ ){ //get x squared
|
||||
xSquared =+ pow(_x[xCount-i],2);
|
||||
}
|
||||
|
||||
for ( i - 1; i < xCount; i++ ){ //update weights
|
||||
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared);
|
||||
}
|
||||
}
|
||||
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / M;
|
||||
double deviation = 0.0;
|
||||
|
||||
// Mean square
|
||||
for( i = 0; i < M-1; i++ ){
|
||||
deviation += pow( xError[i], 2 );
|
||||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
|
||||
// write in file
|
||||
FILE *fp2 = fopen(fileName(RES), "wb+");
|
||||
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
|
||||
fclose(fp2);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
direkterVorgaenger()
|
||||
|
||||
|
||||
Variant (2/3),
|
||||
substract direct predecessor
|
||||
|
||||
===================================
|
||||
*/
|
||||
|
||||
void direkterVorgaenger() {
|
||||
|
||||
double xError [M];
|
||||
int xCount = 0, i;
|
||||
|
||||
// File handling
|
||||
FILE *fp3 = fopen(fileName(DRCTPRD), "wb+");
|
||||
|
||||
for ( xCount = 1; xCount < M; xCount++ ){
|
||||
double xPredicted = 0.0;
|
||||
double xActual = _x[xCount+1];
|
||||
|
||||
for ( i = 1; i < xCount; i++ ){
|
||||
xPredicted += ( w[i][xCount] * ( _x[xCount - i] - _x[xCount - i - 1]));
|
||||
}
|
||||
|
||||
xPredicted += _x[xCount-1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
||||
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
||||
|
||||
|
||||
//get x squared
|
||||
double xSquared = 0;
|
||||
for ( i = 1; i < xCount; i++ ){
|
||||
xSquared += pow( _x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
|
||||
for ( i = 1; i < xCount; i++){
|
||||
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * ( ( _x[xCount - i - 1] ) / xSquared );
|
||||
}
|
||||
}
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
for ( i = 0; i < xErrorLength -1; i++ ){
|
||||
deviation += pow( xError[i] - mean, 2);
|
||||
}
|
||||
|
||||
|
||||
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
||||
fclose(fp3);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
fileName()
|
||||
|
||||
|
||||
generates filename with date for
|
||||
logging purposes
|
||||
|
||||
===================================
|
||||
*/
|
||||
|
||||
const char *fileName(int id){
|
||||
|
||||
static char* suffix[] = {"_weights.txt","_weights_after.txt", "_results.txt", "direct_predecessor.txt"};
|
||||
char *date;
|
||||
time_t now;
|
||||
now = time(NULL);
|
||||
strftime(date, 20, "%Y-%m-%d_%H_%M_%S", localtime(&now));
|
||||
strcat(suffix[id], date);
|
||||
return suffix[id];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
sum_array
|
||||
|
||||
|
||||
sum of all elements in x
|
||||
within a defined length
|
||||
|
||||
===================================
|
||||
|
||||
*/
|
||||
|
||||
double sum_array(double x[], int length){
|
||||
//int length = 0;
|
||||
int i = 0;
|
||||
double sum = 0.0;
|
||||
//length = sizeof(x)/sizeof(x[0]);
|
||||
for (i=0; i< length; i++){
|
||||
sum += x[i];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
r2()
|
||||
|
||||
returns a double value between
|
||||
0 and 1
|
||||
|
||||
===================================
|
||||
|
||||
*/
|
||||
double r2()
|
||||
{
|
||||
return((rand() % 10000) / 10000.0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
===================================
|
||||
|
||||
int rnd()
|
||||
|
||||
fills a double variable with
|
||||
random value and returns it
|
||||
|
||||
===================================
|
||||
|
||||
*/
|
||||
double rnd()
|
||||
{
|
||||
double rndmval= r2();
|
||||
return rndmval;
|
||||
}
|
|
@ -1,3 +0,0 @@
|
|||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
Loading…
Reference in New Issue