restructre of folder and files

This commit is contained in:
gurkenhabicht 2018-05-16 11:13:04 +02:00
parent f78156882d
commit 1f198fd26d
5 changed files with 1182 additions and 0 deletions

BIN
src/.DS_Store vendored Normal file

Binary file not shown.

BIN
src/c_sharp_implementation/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,446 @@
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
namespace NMLS_Graphisch
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
static int NumberOfSamples = 1000;
const int tracking = 40;
static Stack<double> x = new Stack<double>();
static Random rnd = new Random();
static double[] _x = new double[NumberOfSamples];
static double[,] w = new double[NumberOfSamples, NumberOfSamples];
static double learnrate = 0.2;
static double[] pixel_array;
static int windowSize = 5;
private void button1_Click(object sender, EventArgs e)
{
NumberOfSamples = Int32.Parse(comboBox2.SelectedItem.ToString());
chart1.ChartAreas[0].AxisX.Maximum = NumberOfSamples;
chart1.ChartAreas[0].AxisY.Maximum = 300;
chart1.ChartAreas[0].AxisY.Minimum = -5;
if (checkBox1.Checked)
{
for (int i = 0; i < tracking; i++)
{
for (int k = 0; k < windowSize; k++)
{
File.AppendAllText("weights.txt",
String.Format("[{0}][{1}] {2}\n", k, i, Math.Round(w[k, i], 2).ToString()),
Encoding.UTF8);
}
}
}
Series[] series = new Series[2];
switch (comboBox1.SelectedItem.ToString())
{
case "lokaler Mittelwert":
series = lokalerMittelWert();
break;
case "direkter Vorgänger":
series = direkterVorgaenger();
break;
case "differenzieller Vorgänger":
series = diffVorgaenger();
break;
default:
return;
}
foreach (Series s in series)
{
if (chart1.Series.IndexOf(s.Name) < 0)
{
chart1.Series.Add(s);
}
else
{
chart1.Series.RemoveAt(chart1.Series.IndexOf(s.Name));
chart1.Series.Add(s);
}
}
if (checkBox1.Checked)
{
for (int i = 0; i < tracking; i++)
{
for (int k = 0; k < windowSize; k++)
{
File.AppendAllText("weights_after.txt",
String.Format("[{0}][{1}] {2}\n", k, i, Math.Round(w[k, i], 2).ToString()),
Encoding.UTF8);
}
}
}
}
Series[] lokalerMittelWert()
{
int x_count = 0;
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
//Graphischer Stuff
Series lokal_M_error = new Series("Lokaler Mittelwert Error");
Series lokal_M_predic = new Series("Lokaler Mittelwert Prediction");
lokal_M_error.ChartType = SeriesChartType.Spline;
lokal_M_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double[] x_part_Array = new double[x_count];
int _sourceIndex = (x_count > windowSize) ? x_count - windowSize : 0;
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : (x_count > 0) ? x_count : 0;
Array.Copy(_x, _sourceIndex, x_part_Array, 0, _arrayLength);
double x_middle = (x_count > 0) ? ( x_part_Array.Sum() / _arrayLength) : 0;
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_middle));
}
x_pred += x_middle;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
double x_square = 0;
//Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - i] - x_middle, 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_middle) / x_square);
}
// Graphischer Stuff
lokal_M_error.Points.AddXY(x_count, x_error[x_count]);
lokal_M_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if(!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { lokal_M_predic, lokal_M_error };
}
Series[] direkterVorgaenger()
{
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
int x_count = 0;
// Graphischer Stuff
Series direkterVorgaenger_error = new Series("Direkter Vorgänger Error");
Series direkterVorgaenger_predic = new Series("Direkter Vorgänger Prediction");
direkterVorgaenger_error.ChartType = SeriesChartType.Spline;
direkterVorgaenger_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
if (x_count > 0)
{
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count;
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - 1] - x_array[x_count - i - 1]));
}
x_pred += x_array[x_count - 1];
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
double x_square = 0;
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - 1] - x_array[x_count - i - 1], 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - 1] - x_array[x_count - i - 1]) / x_square);
}
}
//Graphischer Stuff
direkterVorgaenger_error.Points.AddXY(x_count, x_error[x_count]);
direkterVorgaenger_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if (!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { direkterVorgaenger_error, direkterVorgaenger_predic };
}
Series[] diffVorgaenger()
{
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
int x_count = 1;
//Graphischer Stuff
Series diffVorgaenger_error = new Series("Differenzieller Vorgänger Error");
Series diffVorgaenger_predic = new Series("Differenzieller Vorgänger Prediction");
diffVorgaenger_error.ChartType = SeriesChartType.Spline;
diffVorgaenger_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
if (x_count > 0)
{
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count;
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_array[x_count - i - 1]));
}
x_pred += x_array[x_count - 1];
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
double x_square = 0;
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - i] - x_array[x_count - i - 1], 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_array[x_count - i - 1]) / x_square);
}
}
//Graphischer Stuff
diffVorgaenger_error.Points.AddXY(x_count, x_error[x_count]);
diffVorgaenger_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if (!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { diffVorgaenger_error, diffVorgaenger_predic };
}
// Inizialisierung von Arrays
private void Form1_Load(object sender, EventArgs e)
{
comboBox1.SelectedIndex = 0;
comboBox2.SelectedIndex = 0;
chart1.Series.Clear();
Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline;
for (int i = 0; i < NumberOfSamples; i++)
{
_x[i] += ((255.0 / NumberOfSamples) * i);
for (int k = 0; k < windowSize; k++)
{
w[k, i] = rnd.NextDouble();
//Console.WriteLine(String.Format("Weight[{0}, {1}]: {2}",k,i, w[k, i]));
}
x_actual.Points.AddXY(i, _x[i]);
}
chart1.Series.Add(x_actual);
}
// Graphen Clearen
private void button2_Click(object sender, EventArgs e)
{
chart1.Series.Clear();
Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline;
for (int i = 0; i < NumberOfSamples; i++)
{
x_actual.Points.AddXY(i, _x[i]);
}
chart1.Series.Add(x_actual);
}
// Bild Laden
private void button3_Click(object sender, EventArgs e)
{
OpenFileDialog openFileDialog = new OpenFileDialog();
if(openFileDialog.ShowDialog() == DialogResult.OK)
{
try
{
Bitmap img = new Bitmap(openFileDialog.FileName);
pixel_array = new double[img.Width * img.Height];
for (int i = 1; i < img.Width; i++)
{
for (int j = 1; j < img.Height; j++)
{
Color pixel = img.GetPixel(i, j);
pixel_array[j*i] = pixel.R;
}
}
NumberOfSamples = (img.Width * img.Height) / 2;
comboBox2.Items.Add(NumberOfSamples);
_x = pixel_array;
w = new double[NumberOfSamples, NumberOfSamples];
for (int i = 0; i < NumberOfSamples; i++)
{
for (int k = 1; k < NumberOfSamples; k++)
{
w[k, i] = rnd.NextDouble();
}
}
}
catch(Exception exep)
{
MessageBox.Show("Konnte Bild nicht laden.");
MessageBox.Show(String.Format("{0}", exep.ToString()));
}
}
}
}
}

View File

@ -0,0 +1,674 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
// Copyright © 2018 FBRDNLMS. All rights reserved.
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#include <codecvt> // std::codecvt_utf8_utf16
#include <locale> // std::wstring_convert
#include <string> // std::wstring
#define M 1000
#define tracking 40 //Count of weights
#define learnrate 1.0
#define PURE_WEIGHTS 0
#define USED_WEIGHTS 1
#define RESULTS 3
#define DIRECT_PREDECESSOR 2
#define LOCAL_MEAN 4
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
double x[] = { 0 };
double _x[M] = { 0 };
double w[M][M] = { { 0 },{ 0 } };
/* UTF-8 to UTF-16 win Format*/
auto wstring_from_utf8(char const* const utf8_string)
-> std::wstring
{
std::wstring_convert< std::codecvt_utf8_utf16< wchar_t > > converter;
return converter.from_bytes(utf8_string);
}
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[M]; // [0]=xActual, [1]=xPredicted from directPredecessor, [2]=xPredicted from localMean
/* *ppm reader/writer* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * readPPM(char *fileName);
void mkPpmFile(char *fileNamem, imagePixel_t *image);
int * ppmColorChannel(imagePixel_t *image);
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
#ifdef _WIN32
size_t getline(char **lineptr, size_t *n, FILE *stream);
#endif
void mkSvgGraph(point_t points[]);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(void);
void localMean(void);
int main(int argc, char **argv) {
char fileName[50];
int i;
srand((unsigned int)time(NULL));
for (i = 0; i < M; i++) {
_x[i] += ((255.0 / M) * i); // Init test values
for (int k = 0; k < M; k++) {
w[k][i] = rndm(); // Init weights
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i <= tracking; i++) {
for (int k = 0; k < tracking; k++) {
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp0);
// math magic
localMean();
directPredecessor(); // TODO: used_weights.txt has gone missing!
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < tracking; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
// getchar();
printf("DONE!");
}
/*
=======================================================================================
localMean
Variant (1/3), substract local mean.
=======================================================================================
*/
void localMean(void) {
char fileName[50];
double xError[M]; // includes e(n)
memset(xError, 0, M);// initialize xError-array with Zero
int xCount = 0; // runtime var
int i;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n\n\n\n*********************LocalMean*********************\n");
for (xCount = 1; xCount < M; xCount++) {
//double xPartArray[xCount]; //includes all values at the size of runtime var
double xMean = (xCount > 0) ? (sum_array(_x, xCount) / xCount) : 0;// xCount can not be zero
double xPredicted = 0.0;
double xActual = _x[xCount + 1];
for (i = 1; i < xCount; i++) { //get predicted value
xPredicted += (w[i][xCount] * (_x[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
double xSquared = 0.0;
for (i = 1; i < xCount; i++) { //get x squared
xSquared = +pow(_x[xCount - i], 2);
}
for (i - 1; i < xCount; i++) { //update weights
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared);
}
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / M;
double deviation = 0.0;
// Mean square
for (i = 0; i < M - 1; i++) {
deviation += pow(xError[i], 2);
}
deviation /= xErrorLength;
// write in file
mkFileName(fileName, sizeof(fileName), RESULTS);
FILE *fp2 = fopen(fileName, "w");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2);
fclose(fp4);
}
/*
===================================
directPredecessor
Variant (2/3),
substract direct predecessor
===================================
*/
void directPredecessor(void) {
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n\n\n\n*********************DirectPredecessor*********************\n");
for (xCount = 1; xCount < M + 1; xCount++) {
xActual = _x[xCount + 1];
double xPredicted = 0.0;
for (i = 1; i < xCount; i++) {
xPredicted += (w[i][xCount] * (_x[xCount - i] - _x[xCount - i - 1]));
}
xPredicted += _x[xCount - 1];
xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[0] = xCount;
points[xCount].yVal[0] = xActual;
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
double xSquared = 0.0;
for (i = 1; i < xCount; i++) {
xSquared += pow(_x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < xCount; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((_x[xCount - i] - _x[xCount - i - 1]) / xSquared); //TODO: double val out of bounds
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
mkSvgGraph(points);
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3);
}
/*
=========================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If[M ?K the total length is longer than max_len,
only max_len characters will be written.
=========================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
=========================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
==========================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt" };
return suffix[id];
}
/*
==========================================================================
svgGraph
==========================================================================
*/
/*
void Graph ( ) {
char fileName[50];
mkFileName(fileName, sizeof(fileName), GRAPH);
FILE* fp4 = fopen(fileName, "w");
pfrintf
*/
/*
==========================================================================
myLogger
Logs on filepointer, used for svg graphing
==========================================================================
*/
void myLogger(FILE* fp, point_t points[]) {
/*int i;
for (i = 0; i <= M; i++) { // xActual
fprintf(fp, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor
fprintf(fp, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean
fprintf(fp, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
}*/
}
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i <= M; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
}
/*
=========================================================================
sum_array
Sum of all elements in x within a defined length
=========================================================================
*/
double sum_array(double x[], int length) {
int i = 0;
double sum = 0.0;
for (i = 0; i< length; i++) {
sum += x[i];
}
return sum;
}
/*
==========================================================================
r2
returns a random double value between 0 and 1
==========================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
==========================================================================
rndm
fills a double variable with random value and returns it
==========================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
==========================================================================
getline
This code is public domain -- Will Hartung 4/9/09 //edited by Kevin Becker
Microsoft Windows is not POSIX conform and does not support getline.
=========================================================================
*/
#ifdef _WIN32
size_t getline(char **lineptr, size_t *n, FILE *stream) {
char *bufptr = NULL;
char *p = bufptr;
size_t size;
int c;
if (lineptr == NULL) {
return -1;
}
if (stream == NULL) {
return -1;
}
if (n == NULL) {
return -1;
}
bufptr = *lineptr;
size = *n;
c = fgetc(stream);
if (c == EOF) {
return -1;
}
if (bufptr == NULL) {
char c[128];
memset(c, 0, sizeof(c));
bufptr = c;
if (bufptr == NULL) {
return -1;
}
size = 128;
}
p = bufptr;
while (c != EOF) {
if ((p - bufptr) > (size - 1)) {
size = size + 128;
realloc(bufptr, size);
if (bufptr == NULL) {
return -1;
}
}
*p++ = c;
if (c == '\n') {
break;
}
c = fgetc(stream);
}
*p++ = '\0';
*lineptr = bufptr;
*n = size;
return p - bufptr - 1;
}
#endif
/*
==========================================================================
mkSvgGraph
parses template.svg and writes results in said template
==========================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("template.svg", "r");
FILE *target = fopen("output.svg", "w");
char line[512];
// char *ptr;
//size_t len = 0;
//ssize_t read;
//char values[64];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
//int length = 0;
while(!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line,strlen(line));
printf("%s\n", line);
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
//int c = 0;
puts(buffer);
//getchar();
//if (strstr(line, firstGraph) != NULL) {
// //fprintf(target,"HECK!!!\n");
// bufferLogger(strstr(line, firstGraph),sizeof(firstGraph), points);
//}
/*while ((read = getline(&line, &len, input)) != -1) {
//printf("Retrieved line of length %zu :\n", read);
//puts(line); // debug purpose
fprintf(target, "%s", line);
if (strstr(line, firstGraph) != NULL) {
fprintf(target,"HECK!!!\n");
myLogger(target, points);
}
}*/
/*free(line);
free(target);
free(input);*/
//exit(EXIT_SUCCESS);
}
/*
===========================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
==========================================================================
*/
static imagePixel_t *rdPPM(const char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
=======================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new mkPpmFile. Best Case is a
carbon copy of the source image
=======================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================
ppmColorChannel
gets one of the rgb color channels and returns the array
======================================================================================
*/
int * ppmColorChannel(imagePixel_t *image) {
int length = (image->x * image->y) / 3;
int i = 0;
int buffer[10];
realloc(buffer,length);
printf("%d\n", length);
if (image) {
for (i = 0; i < length; i++) {
buffer[i] = image->data[i].green;
//output[i] = image->data[i].blue;
//output[i] = image->data[i].red;
}
}
return buffer;
}

View File

@ -0,0 +1,62 @@
<!DOCTYPE html>
<html>
<head>
NLMSvariants | Graphical Output ||
<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
<script>
function clicksvg(e){
id = e.id
graph = document.getElementById("svg_" + id);
if(graph.style.visibility == "hidden" || !graph.style.visibility){
graph.style.visibility = "visible";
}else{
graph.style.visibility = "hidden";
}
}
</script>
</head>
<body>
<svg height="1200" viewBox="100 50 400 -400" width="3000" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<desc>NLMSvariants output graph
</desc>
<defs>
<pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
<path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
</pattern>
<pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
<rect width="100" height="100" fill="url(#smallGrid)"></rect>
<path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
</pattern>
</defs>
<rect fill="white" height="1200" width="3000" y="0"></rect>
<rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
<g transform="translate(0,0) scale(1, 1)">
<line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
<line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
</g>
<g transform="translate(200, 400) scale(1,-1)">
<path d="M0 0
<text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
<text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
<text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
<text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
</g>
</svg>
<table width = "100%" border = 1>
<tr align = "top">
<td colspan = "2" bgcolor = "#fefefe">
<h1>
<font color="blue">Eingangswert</font> |
<font color="red">direkter Vorgaenger</font> |
<font color="green">letzter Mittelwert</font>
</h1>
</td>
</tr>
</body>
<html>