Merge branch 'master' of https://github.com/FBRDNLMS/NLMSvariants
This commit is contained in:
		
						commit
						262bf65bbf
					
				| 
						 | 
					@ -0,0 +1,774 @@
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//  NLMSvariants.c
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//  Created by FBRDNLMS on 26.04.18.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include <stdio.h>
 | 
				
			||||||
 | 
					#include <math.h>
 | 
				
			||||||
 | 
					#include <time.h>
 | 
				
			||||||
 | 
					#include <stdlib.h>
 | 
				
			||||||
 | 
					#include <string.h>
 | 
				
			||||||
 | 
					#include <float.h> // DBL_MAX
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define NUMBER_OF_SAMPLES 1000
 | 
				
			||||||
 | 
					#define WINDOWSIZE 5
 | 
				
			||||||
 | 
					#define tracking 40 //Count of weights
 | 
				
			||||||
 | 
					#define learnrate 0.8
 | 
				
			||||||
 | 
					#define PURE_WEIGHTS 0
 | 
				
			||||||
 | 
					#define USED_WEIGHTS 1
 | 
				
			||||||
 | 
					#define RESULTS 3
 | 
				
			||||||
 | 
					#define DIRECT_PREDECESSOR 2
 | 
				
			||||||
 | 
					#define LOCAL_MEAN 4
 | 
				
			||||||
 | 
					#define TEST_VALUES 5
 | 
				
			||||||
 | 
					#define DIFFERENTIAL_PREDECESSOR 6
 | 
				
			||||||
 | 
					#define RGB_COLOR 255
 | 
				
			||||||
 | 
					#if defined(_MSC_VER)
 | 
				
			||||||
 | 
					#include <BaseTsd.h>
 | 
				
			||||||
 | 
					typedef SSIZE_T ssize_t;
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//double x[] = { 0.0 };
 | 
				
			||||||
 | 
					double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* *svg graph building* */
 | 
				
			||||||
 | 
					typedef struct {
 | 
				
			||||||
 | 
						double xVal[7];
 | 
				
			||||||
 | 
						double yVal[7];
 | 
				
			||||||
 | 
					}point_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
													   /* *ppm read, copy, write* */
 | 
				
			||||||
 | 
					typedef struct {
 | 
				
			||||||
 | 
						unsigned char red, green, blue;
 | 
				
			||||||
 | 
					}colorChannel_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef struct {
 | 
				
			||||||
 | 
						int x, y;
 | 
				
			||||||
 | 
						colorChannel_t *data;
 | 
				
			||||||
 | 
					}imagePixel_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static imagePixel_t * rdPPM(char *fileName); // read PPM file format
 | 
				
			||||||
 | 
					void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
 | 
				
			||||||
 | 
					int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
 | 
				
			||||||
 | 
					void colorSamples(FILE* fp); // stores color channel values in xSamples[]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* *file handling* */
 | 
				
			||||||
 | 
					char * mkFileName(char* buffer, size_t max_len, int suffixId);
 | 
				
			||||||
 | 
					char *fileSuffix(int id);
 | 
				
			||||||
 | 
					void myLogger(FILE* fp, point_t points[]);
 | 
				
			||||||
 | 
					void mkSvgGraph(point_t points[]);
 | 
				
			||||||
 | 
					//void weightsLogger(double *weights, int var);
 | 
				
			||||||
 | 
					/* *rand seed* */
 | 
				
			||||||
 | 
					double r2(void);
 | 
				
			||||||
 | 
					double rndm(void);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* *math* */
 | 
				
			||||||
 | 
					double sum_array(double x[], int length);
 | 
				
			||||||
 | 
					void directPredecessor(double *weights);
 | 
				
			||||||
 | 
					void localMean(double *weights);
 | 
				
			||||||
 | 
					//void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
				
			||||||
 | 
					void differentialPredecessor(double *weights);
 | 
				
			||||||
 | 
					double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
 | 
				
			||||||
 | 
					double windowXMean(int _arraylength, int xCount);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int main(int argc, char **argv) {
 | 
				
			||||||
 | 
					    	double weights[WINDOWSIZE] =  { 0.0 };
 | 
				
			||||||
 | 
					//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
				
			||||||
 | 
						char fileName[50];
 | 
				
			||||||
 | 
						int i, xLength;	
 | 
				
			||||||
 | 
						imagePixel_t *image;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						image = rdPPM("beaches.ppm");
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
				
			||||||
 | 
						FILE* fp5 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						xLength = ppmColorChannel(fp5, image);
 | 
				
			||||||
 | 
						printf("%d\n", xLength);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						FILE* fp6 = fopen(fileName, "r");
 | 
				
			||||||
 | 
						colorSamples(fp6);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						srand((unsigned int)time(NULL));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < WINDOWSIZE; i++) {
 | 
				
			||||||
 | 
							//_x[i] += ((255.0 / M) * i); // Init test values
 | 
				
			||||||
 | 
						//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
 | 
								weights[i] = rndm(); // Init weights
 | 
				
			||||||
 | 
						//	}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
				
			||||||
 | 
						// save plain test_array before math magic happens
 | 
				
			||||||
 | 
						FILE *fp0 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						for (i = 0; i < WINDOWSIZE; i++) {
 | 
				
			||||||
 | 
					//		for (k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
 | 
								fprintf(fp0, "[%d]%lf\n", i, weights[i]);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					//	}
 | 
				
			||||||
 | 
						fclose(fp0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// math magic
 | 
				
			||||||
 | 
					/*	for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
				
			||||||
 | 
					       	 for (k = 0; k < WINDOWSIZE; k++){
 | 
				
			||||||
 | 
					            local_weights[k][i] = weights[k][i];
 | 
				
			||||||
 | 
						    printf("ALT::%f\n", local_weights[k][i]);
 | 
				
			||||||
 | 
					        	}
 | 
				
			||||||
 | 
						}*/
 | 
				
			||||||
 | 
						localMean(weights);
 | 
				
			||||||
 | 
					//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
				
			||||||
 | 
						directPredecessor(weights);
 | 
				
			||||||
 | 
					//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
				
			||||||
 | 
						differentialPredecessor(weights);
 | 
				
			||||||
 | 
						mkSvgGraph(points);
 | 
				
			||||||
 | 
						// save test_array after math magic happened
 | 
				
			||||||
 | 
						// memset( fileName, '\0', sizeof(fileName) );
 | 
				
			||||||
 | 
					/*	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
				
			||||||
 | 
						FILE *fp1 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						for (i = 0; i < tracking; i++) {
 | 
				
			||||||
 | 
							for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
 | 
								fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fclose(fp1);
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
						// getchar();
 | 
				
			||||||
 | 
						printf("\nDONE!\n");
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					localMean
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Variant (1/3), substract local mean.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void localMean(double *weights) {	
 | 
				
			||||||
 | 
						double local_weights[WINDOWSIZE];
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE);
 | 
				
			||||||
 | 
						char fileName[50];
 | 
				
			||||||
 | 
						double xError[2048]; // includes e(n)
 | 
				
			||||||
 | 
						memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
 | 
				
			||||||
 | 
						int xCount = 0, i; // runtime var;
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
				
			||||||
 | 
						FILE* fp4 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						fprintf(fp4, "\n=====================================LocalMean=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						double xMean = xSamples[0];	
 | 
				
			||||||
 | 
						double xSquared = 0.0;
 | 
				
			||||||
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
 | 
							//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
				
			||||||
 | 
							//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
				
			||||||
 | 
							int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
 | 
							//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
				
			||||||
 | 
							xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
				
			||||||
 | 
							// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
				
			||||||
 | 
							xPredicted = 0.0;
 | 
				
			||||||
 | 
							xActual = xSamples[xCount + 1];
 | 
				
			||||||
 | 
							//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
				
			||||||
 | 
								xPredicted += (local_weights[i] * (xSamples[xCount - i] - xMean));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							xPredicted += xMean;
 | 
				
			||||||
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
 | 
							printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
				
			||||||
 | 
							points[xCount].xVal[1] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[1] = xPredicted;
 | 
				
			||||||
 | 
							points[xCount].xVal[4] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[4] = xError[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							xSquared = 0.0;
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
				
			||||||
 | 
								xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
				
			||||||
 | 
							//	printf("xSquared:%f\n", xSquared);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
 | 
								xSquared = 1.0;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							//printf("%f\n", xSquared);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) { //update weights
 | 
				
			||||||
 | 
								local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
				
			||||||
 | 
							//	printf("NEU::%lf\n", local_weights[i]);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
				
			||||||
 | 
							
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						printf("vor:%d", xErrorLength);
 | 
				
			||||||
 | 
						popNAN(xError, xErrorLength);
 | 
				
			||||||
 | 
						printf("nach:%d", xErrorLength);
 | 
				
			||||||
 | 
						xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// Mean square
 | 
				
			||||||
 | 
						for (i = 0; i < xErrorLength - 1; i++) {
 | 
				
			||||||
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// write in file
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
 | 
						FILE *fp2 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
 | 
				
			||||||
 | 
						fclose(fp2);
 | 
				
			||||||
 | 
						fclose(fp4);
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
					//	weightsLogger( local_weights, USED_WEIGHTS );
 | 
				
			||||||
 | 
						//mkSvgGraph(points);
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					directPredecessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Variant (2/3),
 | 
				
			||||||
 | 
					substract direct predecessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void directPredecessor(double *weights) {
 | 
				
			||||||
 | 
						double local_weights[WINDOWSIZE];
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
 | 
				
			||||||
 | 
						char fileName[512];
 | 
				
			||||||
 | 
						double xError[2048];
 | 
				
			||||||
 | 
						int xCount = 0, i;
 | 
				
			||||||
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
						// File handling
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
				
			||||||
 | 
						FILE *fp3 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
 | 
							//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
				
			||||||
 | 
													   //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
				
			||||||
 | 
							int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
 | 
							//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
				
			||||||
 | 
							// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
				
			||||||
 | 
							xPredicted = 0.0;
 | 
				
			||||||
 | 
							xActual = xSamples[xCount + 1];
 | 
				
			||||||
 | 
							//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								xPredicted += (local_weights[i] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							xPredicted += xSamples[xCount - 1];
 | 
				
			||||||
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
				
			||||||
 | 
							points[xCount].xVal[2] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[2] = xPredicted;
 | 
				
			||||||
 | 
							points[xCount].xVal[5] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[5] = xError[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							double xSquared = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						printf("vor:%d", xErrorLength);
 | 
				
			||||||
 | 
						popNAN(xError, xErrorLength);
 | 
				
			||||||
 | 
						printf("nach:%d", xErrorLength);
 | 
				
			||||||
 | 
						xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < xErrorLength - 1; i++) {
 | 
				
			||||||
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//	mkSvgGraph(points);
 | 
				
			||||||
 | 
						fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fclose(fp3);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					differentialPredecessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					variant (3/3),
 | 
				
			||||||
 | 
					differenital predecessor.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					void differentialPredecessor(double *weights) {
 | 
				
			||||||
 | 
						double local_weights[WINDOWSIZE];
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
 | 
				
			||||||
 | 
						char fileName[512];
 | 
				
			||||||
 | 
						double xError[2048];
 | 
				
			||||||
 | 
						int xCount = 0, i;
 | 
				
			||||||
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// File handling
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
				
			||||||
 | 
						FILE *fp6 = fopen(fileName, "w");
 | 
				
			||||||
 | 
						fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
 | 
							xActual = xSamples[xCount +1];	
 | 
				
			||||||
 | 
							xPredicted = 0.0;
 | 
				
			||||||
 | 
							int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								xPredicted += (local_weights[i] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							xPredicted += xSamples[xCount - 1];
 | 
				
			||||||
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xSamples[xCount], xError[xCount]);
 | 
				
			||||||
 | 
							points[xCount].xVal[3] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[3] = xPredicted;
 | 
				
			||||||
 | 
							points[xCount].xVal[6] = xCount;
 | 
				
			||||||
 | 
							points[xCount].yVal[6] = xError[xCount];
 | 
				
			||||||
 | 
							double xSquared = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							if (xSquared == 0.0 ){
 | 
				
			||||||
 | 
								xSquared = 1.0;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
 | 
								printf("NEU::%lf\n", local_weights[i]);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						printf("vor:%d", xErrorLength);
 | 
				
			||||||
 | 
						popNAN(xError, xErrorLength);
 | 
				
			||||||
 | 
						printf("nach:%d", xErrorLength);
 | 
				
			||||||
 | 
						xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < xErrorLength - 1; i++) {
 | 
				
			||||||
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						//mkSvgGraph(points);
 | 
				
			||||||
 | 
						fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fclose(fp6);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mkFileName
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Writes the current date plus the suffix with index suffixId
 | 
				
			||||||
 | 
					into the given buffer. If the total length is longer than max_len,
 | 
				
			||||||
 | 
					only max_len characters will be written.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
				
			||||||
 | 
						const char * format_str = "%Y-%m-%d_%H_%M_%S";
 | 
				
			||||||
 | 
						size_t date_len;
 | 
				
			||||||
 | 
						const char * suffix = fileSuffix(suffixId);
 | 
				
			||||||
 | 
						time_t now = time(NULL);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						strftime(buffer, max_len, format_str, localtime(&now));
 | 
				
			||||||
 | 
						date_len = strlen(buffer);
 | 
				
			||||||
 | 
						strncat(buffer, suffix, max_len - date_len);
 | 
				
			||||||
 | 
						return buffer;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					fileSuffix
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Contains and returns every suffix for all existing filenames
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					char * fileSuffix(int id) {
 | 
				
			||||||
 | 
						char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
 | 
				
			||||||
 | 
						return suffix[id];
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					myLogger
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Logs x,y points to svg graph
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					void weightsLogger (double weights[WINDOWSIZE], int val ) {
 | 
				
			||||||
 | 
						char fileName[512];
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), val);
 | 
				
			||||||
 | 
						FILE* fp = fopen(fileName, "wa");
 | 
				
			||||||
 | 
						for (i = 0; i < WINDOWSIZE; i++) {
 | 
				
			||||||
 | 
						//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
 | 
								fprintf(fp, "[%d]%lf\n", i, weights[i]);
 | 
				
			||||||
 | 
						//	}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/	
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void bufferLogger(char *buffer, point_t points[]) {
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
						char _buffer[512] = "";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
 | 
				
			||||||
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
				
			||||||
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
 | 
						for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
 | 
				
			||||||
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
				
			||||||
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
 | 
						for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
 | 
				
			||||||
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
				
			||||||
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
 | 
						for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
 | 
				
			||||||
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
 | 
				
			||||||
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n");
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					sum_array
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Sum of all elements in x within a defined length
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double sum_array(double x[], int xlength) {
 | 
				
			||||||
 | 
						int i = 0;
 | 
				
			||||||
 | 
						double sum = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if (xlength != 0) {
 | 
				
			||||||
 | 
							for (i = 0; i < xlength; i++) {
 | 
				
			||||||
 | 
								sum += x[i];
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						return sum;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					popNanLength
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					returns length of new array without NAN values
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double *popNAN(double *xError, int xErrorLength) {
 | 
				
			||||||
 | 
						int i, counter;
 | 
				
			||||||
 | 
						double *tmp = NULL;
 | 
				
			||||||
 | 
						double *more_tmp = NULL;
 | 
				
			||||||
 | 
					 	//tmp = realloc( noNAN, xErrorLength * sizeof(double) );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for ( i = 0; i < xErrorLength; i++ ) {
 | 
				
			||||||
 | 
							counter ++;
 | 
				
			||||||
 | 
							more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
 | 
				
			||||||
 | 
								if ( !isnan(xError[i]) ) {
 | 
				
			||||||
 | 
									tmp = more_tmp;
 | 
				
			||||||
 | 
									tmp[counter - 1] = xError[i];
 | 
				
			||||||
 | 
									 
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*	for (i = 0; i < xErrorLength; i++) {
 | 
				
			||||||
 | 
							if (!isnan(xError[i])) {
 | 
				
			||||||
 | 
								tmp[i] = xError[i];
 | 
				
			||||||
 | 
								counter++;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
						//realloc(noNAN, counter * sizeof(double));
 | 
				
			||||||
 | 
						//int tmpLength = sizeof(noNAN) / sizeof(noNAN[0]);
 | 
				
			||||||
 | 
						//memcpy(xError, tmp, tmpLength);
 | 
				
			||||||
 | 
						//return xError;
 | 
				
			||||||
 | 
						return tmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					r2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					returns a random double value between 0 and 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r2(void) {
 | 
				
			||||||
 | 
						return((rand() % 10000) / 10000.0);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					rndm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					fills a double variable with random value and returns it
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double rndm(void) {
 | 
				
			||||||
 | 
						double rndmval = r2();
 | 
				
			||||||
 | 
						return rndmval;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mkSvgGraph
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					parses template.svg and writes results in said template
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void mkSvgGraph(point_t points[]) {
 | 
				
			||||||
 | 
						FILE *input = fopen("graphResults_template.html", "r");
 | 
				
			||||||
 | 
						FILE *target = fopen("graphResults.html", "w");
 | 
				
			||||||
 | 
						char line[512];
 | 
				
			||||||
 | 
						char firstGraph[15] = { "<path d=\"M0 0" };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if (input == NULL) {
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						char buffer[131072] = "";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						memset(buffer, '\0', sizeof(buffer));
 | 
				
			||||||
 | 
						while (!feof(input)) {
 | 
				
			||||||
 | 
							fgets(line, 512, input);
 | 
				
			||||||
 | 
							strncat(buffer, line, strlen(line));
 | 
				
			||||||
 | 
							//	printf("%s\n", line);
 | 
				
			||||||
 | 
							if (strstr(line, firstGraph) != NULL) {
 | 
				
			||||||
 | 
								bufferLogger(buffer, points);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fprintf(target, buffer);
 | 
				
			||||||
 | 
						//puts(buffer);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					rdPPM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					reads data from file of type PPM, stores colorchannels in a struct in the
 | 
				
			||||||
 | 
					size of given picture
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static imagePixel_t *rdPPM(char *fileName) {
 | 
				
			||||||
 | 
						char buffer[16];
 | 
				
			||||||
 | 
						imagePixel_t *image;
 | 
				
			||||||
 | 
						int c, rgbColor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						FILE *fp = fopen(fileName, "rb");
 | 
				
			||||||
 | 
						if (!fp) {
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						if (!fgets(buffer, sizeof(buffer), fp)) {
 | 
				
			||||||
 | 
							perror(fileName);
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						if (buffer[0] != 'P' || buffer[1] != '6') {
 | 
				
			||||||
 | 
							fprintf(stderr, "No PPM file format\n");
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
 | 
				
			||||||
 | 
						if (!image) {
 | 
				
			||||||
 | 
							fprintf(stderr, "malloc() failed");
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						c = getc(fp);
 | 
				
			||||||
 | 
						while (c == '#') {
 | 
				
			||||||
 | 
							while (getc(fp) != '\n');
 | 
				
			||||||
 | 
							c = getc(fp);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						ungetc(c, fp);
 | 
				
			||||||
 | 
						if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
 | 
				
			||||||
 | 
							fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						if (fscanf(fp, "%d", &rgbColor) != 1) {
 | 
				
			||||||
 | 
							fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						if (rgbColor != RGB_COLOR) {
 | 
				
			||||||
 | 
							fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						while (fgetc(fp) != '\n');
 | 
				
			||||||
 | 
						image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
				
			||||||
 | 
						if (!image) {
 | 
				
			||||||
 | 
							fprintf(stderr, "malloc() failed");
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
 | 
				
			||||||
 | 
							fprintf(stderr, "Loading image failed");
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
						return image;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mkPpmFile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
 | 
				
			||||||
 | 
					carbon copy of the source image. Build for debugging
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void mkPpmFile(char *fileName, imagePixel_t *image) {
 | 
				
			||||||
 | 
						FILE* fp = fopen(fileName, "wb");
 | 
				
			||||||
 | 
						if (!fp) {
 | 
				
			||||||
 | 
							fprintf(stderr, "Opening file failed.");
 | 
				
			||||||
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fprintf(fp, "P6\n");
 | 
				
			||||||
 | 
						fprintf(fp, "%d %d\n", image->x, image->y);
 | 
				
			||||||
 | 
						fprintf(fp, "%d\n", RGB_COLOR);
 | 
				
			||||||
 | 
						fwrite(image->data, 3 * image->x, image->y, fp);
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ppmColorChannel
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					gets one of the rgb color channels and writes them to a file
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int ppmColorChannel(FILE* fp, imagePixel_t *image) {
 | 
				
			||||||
 | 
						//	int length = 1000; // (image->x * image->y) / 3;
 | 
				
			||||||
 | 
						int i = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if (image) {
 | 
				
			||||||
 | 
							for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
 | 
				
			||||||
 | 
								fprintf(fp, "%d\n", image->data[i].green);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
						return NUMBER_OF_SAMPLES;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					colorSamples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					reads colorChannel values from file and stores them in xSamples as well as points datatype for
 | 
				
			||||||
 | 
					creating the SVG graph
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					void colorSamples(FILE* fp) {
 | 
				
			||||||
 | 
						int i = 0;	
 | 
				
			||||||
 | 
						char  buffer[NUMBER_OF_SAMPLES];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						while (!feof(fp)) {
 | 
				
			||||||
 | 
							if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
 | 
				
			||||||
 | 
								sscanf(buffer, "%lf", &xSamples[i]);
 | 
				
			||||||
 | 
								//printf("%lf\n", xSamples[i] );
 | 
				
			||||||
 | 
								points[i].yVal[0] = xSamples[i];
 | 
				
			||||||
 | 
								points[i].xVal[0] = i;
 | 
				
			||||||
 | 
								++i;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double windowXMean(int _arraylength, int xCount) {
 | 
				
			||||||
 | 
						double sum = 0.0;
 | 
				
			||||||
 | 
						double *ptr;
 | 
				
			||||||
 | 
						// printf("*window\t\t*base\t\txMean\n\n");
 | 
				
			||||||
 | 
						for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
 | 
				
			||||||
 | 
						//window = xCount - _arraylength
 | 
				
			||||||
 | 
						//base = window - _arraylength;
 | 
				
			||||||
 | 
						//sum = 0.0;
 | 
				
			||||||
 | 
						//for( count = 0; count < _arraylength; count++){
 | 
				
			||||||
 | 
						sum += *ptr;
 | 
				
			||||||
 | 
						//	printf("%f\n", *base);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							//}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
 | 
				
			||||||
 | 
						return sum / (double)_arraylength;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -13,7 +13,7 @@
 | 
				
			||||||
#include <string.h>
 | 
					#include <string.h>
 | 
				
			||||||
#include <float.h> // DBL_MAX
 | 
					#include <float.h> // DBL_MAX
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define NUMBER_OF_SAMPLES 1000
 | 
					#define NUMBER_OF_SAMPLES 500
 | 
				
			||||||
#define WINDOWSIZE 5
 | 
					#define WINDOWSIZE 5
 | 
				
			||||||
#define tracking 40 //Count of weights
 | 
					#define tracking 40 //Count of weights
 | 
				
			||||||
#define learnrate 0.8
 | 
					#define learnrate 0.8
 | 
				
			||||||
| 
						 | 
					@ -32,7 +32,6 @@ typedef SSIZE_T ssize_t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//double x[] = { 0.0 };
 | 
					//double x[] = { 0.0 };
 | 
				
			||||||
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
 | 
					double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
 | 
				
			||||||
double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* *svg graph building* */
 | 
					/* *svg graph building* */
 | 
				
			||||||
typedef struct {
 | 
					typedef struct {
 | 
				
			||||||
| 
						 | 
					@ -57,33 +56,35 @@ void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
 | 
				
			||||||
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
 | 
					int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
 | 
				
			||||||
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
 | 
					void colorSamples(FILE* fp); // stores color channel values in xSamples[]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							 /* *file handling* */
 | 
					/* *file handling* */
 | 
				
			||||||
char * mkFileName(char* buffer, size_t max_len, int suffixId);
 | 
					char * mkFileName(char* buffer, size_t max_len, int suffixId);
 | 
				
			||||||
char *fileSuffix(int id);
 | 
					char *fileSuffix(int id);
 | 
				
			||||||
void myLogger(FILE* fp, point_t points[]);
 | 
					void myLogger(FILE* fp, point_t points[]);
 | 
				
			||||||
void mkSvgGraph(point_t points[]);
 | 
					void mkSvgGraph(point_t points[]);
 | 
				
			||||||
 | 
					//void weightsLogger(double *weights, int var);
 | 
				
			||||||
/* *rand seed* */
 | 
					/* *rand seed* */
 | 
				
			||||||
double r2(void);
 | 
					double r2(void);
 | 
				
			||||||
double rndm(void);
 | 
					double rndm(void);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* *math* */
 | 
					/* *math* */
 | 
				
			||||||
double sum_array(double x[], int length);
 | 
					double sum_array(double x[], int length);
 | 
				
			||||||
void directPredecessor(void);
 | 
					void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
				
			||||||
void localMean(void);
 | 
					void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
				
			||||||
void differentialPredecessor(void);
 | 
					void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
 | 
				
			||||||
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
 | 
					//void differentialPredecessor(double *weights);
 | 
				
			||||||
 | 
					double *popNAN(double *xError); //return new array without NAN values
 | 
				
			||||||
double windowXMean(int _arraylength, int xCount);
 | 
					double windowXMean(int _arraylength, int xCount);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
int main(int argc, char **argv) {
 | 
					//int main(int argc, char **argv) {
 | 
				
			||||||
 | 
					int main( void ) {
 | 
				
			||||||
 | 
					    	double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
 | 
				
			||||||
 | 
					//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
				
			||||||
	char fileName[50];
 | 
						char fileName[50];
 | 
				
			||||||
	int i, k, xLength;
 | 
						int i,k, xLength;	
 | 
				
			||||||
	int *colorChannel;
 | 
					 | 
				
			||||||
	imagePixel_t *image;
 | 
						imagePixel_t *image;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						image = rdPPM("beaches.ppm");
 | 
				
			||||||
	image = rdPPM("cow.ppm");
 | 
					 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
						mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
				
			||||||
	FILE* fp5 = fopen(fileName, "w");
 | 
						FILE* fp5 = fopen(fileName, "w");
 | 
				
			||||||
	xLength = ppmColorChannel(fp5, image);
 | 
						xLength = ppmColorChannel(fp5, image);
 | 
				
			||||||
| 
						 | 
					@ -95,30 +96,39 @@ int main(int argc, char **argv) {
 | 
				
			||||||
	srand((unsigned int)time(NULL));
 | 
						srand((unsigned int)time(NULL));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
						for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
				
			||||||
		//		_x[i] += ((255.0 / M) * i); // Init test values
 | 
							//_x[i] += ((255.0 / M) * i); // Init test values
 | 
				
			||||||
		for (int k = 0; k < WINDOWSIZE; k++) {
 | 
							for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
			w[k][i] = rndm(); // Init weights
 | 
								weights[k][i] = rndm(); // Init weights
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
						mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
				
			||||||
	// save plain test_array before math magic happens
 | 
						// save plain test_array before math magic happens
 | 
				
			||||||
	FILE *fp0 = fopen(fileName, "w");
 | 
						FILE *fp0 = fopen(fileName, "w");
 | 
				
			||||||
	for (i = 0; i <= tracking; i++) {
 | 
						for (i = 0; i < tracking; i++) {
 | 
				
			||||||
		for (k = 0; k < WINDOWSIZE; k++) {
 | 
							for (k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
			fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
 | 
								fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp0);
 | 
						fclose(fp0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// math magic
 | 
						// math magic
 | 
				
			||||||
	localMean();
 | 
					/*	for (i = 0; i < NUMBER_OF_SAMPLES; i++){
 | 
				
			||||||
	//directPredecessor();
 | 
					       	 for (k = 0; k < WINDOWSIZE; k++){
 | 
				
			||||||
	//differentialPredecessor();
 | 
					            local_weights[k][i] = weights[k][i];
 | 
				
			||||||
 | 
						    printf("ALT::%f\n", local_weights[k][i]);
 | 
				
			||||||
 | 
					        	}
 | 
				
			||||||
 | 
						}*/
 | 
				
			||||||
 | 
						localMean(weights);
 | 
				
			||||||
 | 
					//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
				
			||||||
 | 
					//	directPredecessor(weights);
 | 
				
			||||||
 | 
					//	memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
				
			||||||
 | 
					//	differentialPredecessor(weights);
 | 
				
			||||||
 | 
						mkSvgGraph(points);
 | 
				
			||||||
	// save test_array after math magic happened
 | 
						// save test_array after math magic happened
 | 
				
			||||||
	// memset( fileName, '\0', sizeof(fileName) );
 | 
						// memset( fileName, '\0', sizeof(fileName) );
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
					/*	mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
 | 
				
			||||||
	FILE *fp1 = fopen(fileName, "w");
 | 
						FILE *fp1 = fopen(fileName, "w");
 | 
				
			||||||
	for (i = 0; i < tracking; i++) {
 | 
						for (i = 0; i < tracking; i++) {
 | 
				
			||||||
		for (int k = 0; k < WINDOWSIZE; k++) {
 | 
							for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
| 
						 | 
					@ -127,10 +137,9 @@ int main(int argc, char **argv) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp1);
 | 
						fclose(fp1);
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
	// getchar();
 | 
						// getchar();
 | 
				
			||||||
	printf("DONE!");
 | 
						printf("\nDONE!\n");
 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -144,9 +153,13 @@ Variant (1/3), substract local mean.
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void localMean(void) {
 | 
					void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {	
 | 
				
			||||||
 | 
						//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
				
			||||||
 | 
						double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
				
			||||||
 | 
					//	double *local_weights[WINDOWSIZE];
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
				
			||||||
	char fileName[50];
 | 
						char fileName[50];
 | 
				
			||||||
	double xError[NUMBER_OF_SAMPLES]; // includes e(n)
 | 
						double xError[2048]; // includes e(n)
 | 
				
			||||||
	memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
 | 
						memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
 | 
				
			||||||
	int xCount = 0, i; // runtime var;
 | 
						int xCount = 0, i; // runtime var;
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
						mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
				
			||||||
| 
						 | 
					@ -154,17 +167,14 @@ void localMean(void) {
 | 
				
			||||||
	fprintf(fp4, "\n=====================================LocalMean=====================================\n");
 | 
						fprintf(fp4, "\n=====================================LocalMean=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double xMean = xSamples[0];	
 | 
						double xMean = xSamples[0];	
 | 
				
			||||||
	double weightedSum = 0.0;
 | 
					 | 
				
			||||||
	double filterOutput = 0.0;
 | 
					 | 
				
			||||||
	double xSquared = 0.0;
 | 
						double xSquared = 0.0;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
 | 
					 | 
				
			||||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
						for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
		//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
							//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
				
			||||||
		//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
							//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
				
			||||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
							int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
		//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
							//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
				
			||||||
		xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
							xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
				
			||||||
		// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
							// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
				
			||||||
| 
						 | 
					@ -173,12 +183,12 @@ void localMean(void) {
 | 
				
			||||||
		//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
							//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
							for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
				
			||||||
			xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xMean));
 | 
								xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		xPredicted += xMean;
 | 
							xPredicted += xMean;
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
		printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
						//	printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
 | 
				
			||||||
		points[xCount].xVal[1] = xCount;
 | 
							points[xCount].xVal[1] = xCount;
 | 
				
			||||||
		points[xCount].yVal[1] = xPredicted;
 | 
							points[xCount].yVal[1] = xPredicted;
 | 
				
			||||||
		points[xCount].xVal[4] = xCount;
 | 
							points[xCount].xVal[4] = xCount;
 | 
				
			||||||
| 
						 | 
					@ -186,42 +196,47 @@ void localMean(void) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		xSquared = 0.0;
 | 
							xSquared = 0.0;
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
							for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
				
			||||||
											 //xSquared += pow(xSamples[xCount - i], 2);
 | 
					 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
								xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
				
			||||||
			printf("xSquared:%f\n", xSquared);
 | 
							//	printf("xSquared:%f\n", xSquared);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		if (xSquared == 0.0) { // returns Pred: -1.#IND00
 | 
							if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
			xSquared = 1.0;
 | 
								xSquared = 1.0;
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		//printf("%f\n", xSquared);
 | 
							//printf("%f\n", xSquared);
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //update weights
 | 
							for (i = 1; i < _arrayLength; i++) { //update weights
 | 
				
			||||||
			w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
								local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
 | 
				
			||||||
 | 
							//	printf("NEU::%lf\n", local_weights[i][xCount]);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
							fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
					//	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
	printf("vor:%d", xErrorLength);
 | 
					//	printf("vor:%d", xErrorLength);
 | 
				
			||||||
	popNAN(xError, xErrorLength);
 | 
						popNAN(xError); // delete NAN values from xError[]
 | 
				
			||||||
	printf("nach:%d", xErrorLength);
 | 
					//	printf("%lf", xError[499]);
 | 
				
			||||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
						double  xErrorLength = xError[0]; // Watch popNAN()!
 | 
				
			||||||
 | 
						printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
						// Mean square
 | 
				
			||||||
	for (i = 0; i < xErrorLength - 1; i++) {
 | 
						for (i = 1; i < xErrorLength; i++) {
 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
	FILE *fp2 = fopen(fileName, "w");
 | 
						FILE *fp2 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
 | 
						fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
 | 
				
			||||||
	fclose(fp2);
 | 
						fclose(fp2);
 | 
				
			||||||
 | 
						free(local_weights);
 | 
				
			||||||
	fclose(fp4);
 | 
						fclose(fp4);
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
					//	weightsLogger( local_weights, USED_WEIGHTS );
 | 
				
			||||||
 | 
						mkSvgGraph(points);
 | 
				
			||||||
 | 
						
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
| 
						 | 
					@ -235,29 +250,34 @@ substract direct predecessor
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void directPredecessor(void) {
 | 
					void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
				
			||||||
 | 
						double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	int xCount = 0, i;
 | 
						int xCount = 0, i;
 | 
				
			||||||
	double xActual;
 | 
						double xActual = 0.0;
 | 
				
			||||||
	int xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	// File handling
 | 
						// File handling
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
				
			||||||
	FILE *fp3 = fopen(fileName, "w");
 | 
						FILE *fp3 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
 | 
						fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
 | 
					
 | 
				
			||||||
		//double xPartArray[xCount]; //includes all values at the size of runtime var
 | 
						for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
 | 
							//double xPartArray[1000]; //includes all values at the size of runtime var
 | 
				
			||||||
								   //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
													   //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
 | 
				
			||||||
		int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
							int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
		printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
							//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
 | 
				
			||||||
		double xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
							// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
 | 
				
			||||||
		printf("%f\n", windowXMean(_arrayLength, xCount));
 | 
					 | 
				
			||||||
		xPredicted = 0.0;
 | 
							xPredicted = 0.0;
 | 
				
			||||||
		xActual = xSamples[xCount + 1];
 | 
							xActual = xSamples[xCount + 1];
 | 
				
			||||||
 | 
							//	weightedSum += _x[ xCount-1 ] * w[xCount][0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
 | 
								xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		xPredicted += xSamples[xCount - 1];
 | 
							xPredicted += xSamples[xCount - 1];
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
| 
						 | 
					@ -274,13 +294,13 @@ void directPredecessor(void) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
								local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
						int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
	printf("vor:%d", xErrorLength);
 | 
						printf("vor:%d", xErrorLength);
 | 
				
			||||||
	popNAN(xError, xErrorLength);
 | 
						popNAN(xError);
 | 
				
			||||||
	printf("nach:%d", xErrorLength);
 | 
						printf("nach:%d", xErrorLength);
 | 
				
			||||||
	xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
						xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
| 
						 | 
					@ -291,8 +311,9 @@ void directPredecessor(void) {
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkSvgGraph(points);
 | 
					//	mkSvgGraph(points);
 | 
				
			||||||
	fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
						fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	fclose(fp3);
 | 
						fclose(fp3);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -307,24 +328,30 @@ differenital predecessor.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void differentialPredecessor(void) {
 | 
					void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
 | 
				
			||||||
 | 
					//	double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];	
 | 
				
			||||||
 | 
						double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	int xCount = 0, i;
 | 
						int xCount = 0, i;
 | 
				
			||||||
	double xActual;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// File handling
 | 
						// File handling
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
				
			||||||
	FILE *fp6 = fopen(fileName, "w");
 | 
						FILE *fp6 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
 | 
						fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
 | 
							for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
 | 
				
			||||||
		xActual = xSamples[xCount + 1];
 | 
					 | 
				
			||||||
		double xPredicted = 0.0;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < xCount; i++) {
 | 
							int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
 | 
				
			||||||
			xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
 | 
							xPredicted = 0.0;
 | 
				
			||||||
 | 
							xActual = xSamples[xCount + 1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
 | 
								xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		xPredicted += xSamples[xCount - 1];
 | 
							xPredicted += xSamples[xCount - 1];
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
| 
						 | 
					@ -336,14 +363,19 @@ void differentialPredecessor(void) {
 | 
				
			||||||
		points[xCount].yVal[6] = xError[xCount];
 | 
							points[xCount].yVal[6] = xError[xCount];
 | 
				
			||||||
		double xSquared = 0.0;
 | 
							double xSquared = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < xCount; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for (i = 1; i < xCount; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
								local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
						int xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
 | 
						printf("vor:%d", xErrorLength);
 | 
				
			||||||
 | 
						popNAN(xError);
 | 
				
			||||||
 | 
						printf("nach:%d", xErrorLength);
 | 
				
			||||||
 | 
						xErrorLength = sizeof(xError) / sizeof(xError[0]);
 | 
				
			||||||
	double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xError, xErrorLength) / xErrorLength;
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -352,8 +384,9 @@ void differentialPredecessor(void) {
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkSvgGraph(points);
 | 
						//mkSvgGraph(points);
 | 
				
			||||||
	fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
						fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	fclose(fp6);
 | 
						fclose(fp6);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -411,6 +444,22 @@ Logs x,y points to svg graph
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void weightsLogger (double weights[WINDOWSIZE], int val ) {
 | 
				
			||||||
 | 
						char fileName[512];
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
						mkFileName(fileName, sizeof(fileName), val);
 | 
				
			||||||
 | 
						FILE* fp = fopen(fileName, "wa");
 | 
				
			||||||
 | 
						for (i = 0; i < WINDOWSIZE; i++) {
 | 
				
			||||||
 | 
						//	for (int k = 0; k < WINDOWSIZE; k++) {
 | 
				
			||||||
 | 
								fprintf(fp, "[%d]%lf\n", i, weights[i]);
 | 
				
			||||||
 | 
						//	}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
 | 
				
			||||||
 | 
						fclose(fp);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void bufferLogger(char *buffer, point_t points[]) {
 | 
					void bufferLogger(char *buffer, point_t points[]) {
 | 
				
			||||||
	int i;
 | 
						int i;
 | 
				
			||||||
	char _buffer[512] = "";
 | 
						char _buffer[512] = "";
 | 
				
			||||||
| 
						 | 
					@ -471,21 +520,32 @@ returns length of new array without NAN values
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
double *popNAN(double *xError, int xErrorLength) {
 | 
					double *popNAN(double *xError) {
 | 
				
			||||||
	int i, counter;
 | 
						int i, counter = 1; 
 | 
				
			||||||
	double noNAN[10];
 | 
						double tmpLength = 0.0;
 | 
				
			||||||
	realloc(noNAN, xErrorLength);
 | 
						double *tmp = NULL;
 | 
				
			||||||
 | 
						double *more_tmp = NULL;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	for (i = 0; i < xErrorLength; i++) {
 | 
					//	printf("LENGTH: %d", xErrorLength);
 | 
				
			||||||
		if (!isnan(xError[i])) {
 | 
					
 | 
				
			||||||
			noNAN[i] = xError[i];
 | 
						for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
 | 
				
			||||||
			counter++;
 | 
							counter ++;
 | 
				
			||||||
 | 
							more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
 | 
				
			||||||
 | 
								if ( !isnan(xError[i]) ) {
 | 
				
			||||||
 | 
									tmp = more_tmp;
 | 
				
			||||||
 | 
									tmp[counter - 1] = xError[i];
 | 
				
			||||||
 | 
									printf("xERROR:%lf\n", tmp[counter - 1]);
 | 
				
			||||||
 | 
									tmpLength++; 
 | 
				
			||||||
			}
 | 
								}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	realloc(noNAN, counter * sizeof(double));
 | 
						counter += 1;
 | 
				
			||||||
	int noNANLength = sizeof(noNAN) / sizeof(noNAN[0]);
 | 
						more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
				
			||||||
	memcpy(xError, noNAN, noNANLength);
 | 
						tmp = more_tmp;
 | 
				
			||||||
	return xError;
 | 
						tmp = &tmpLength; // Length of array has to be stored in tmp[0], 
 | 
				
			||||||
 | 
									    // Cause length is needed later on in the math functions.
 | 
				
			||||||
 | 
									    // xError counting has to begin with 1 in the other functions !
 | 
				
			||||||
 | 
						printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
 | 
				
			||||||
 | 
						return tmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
| 
						 | 
					@ -530,8 +590,8 @@ parses template.svg and writes results in said template
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void mkSvgGraph(point_t points[]) {
 | 
					void mkSvgGraph(point_t points[]) {
 | 
				
			||||||
	FILE *input = fopen("template.svg", "r");
 | 
						FILE *input = fopen("graphResults_template.html", "r");
 | 
				
			||||||
	FILE *target = fopen("output.svg", "w");
 | 
						FILE *target = fopen("graphResults.html", "w");
 | 
				
			||||||
	char line[512];
 | 
						char line[512];
 | 
				
			||||||
	char firstGraph[15] = { "<path d=\"M0 0" };
 | 
						char firstGraph[15] = { "<path d=\"M0 0" };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -681,8 +741,6 @@ creating the SVG graph
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void colorSamples(FILE* fp) {
 | 
					void colorSamples(FILE* fp) {
 | 
				
			||||||
	int i = 0;	
 | 
						int i = 0;	
 | 
				
			||||||
	int d, out;
 | 
					 | 
				
			||||||
	double f;
 | 
					 | 
				
			||||||
	char  buffer[NUMBER_OF_SAMPLES];
 | 
						char  buffer[NUMBER_OF_SAMPLES];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	while (!feof(fp)) {
 | 
						while (!feof(fp)) {
 | 
				
			||||||
| 
						 | 
					@ -698,7 +756,6 @@ void colorSamples(FILE* fp) {
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
double windowXMean(int _arraylength, int xCount) {
 | 
					double windowXMean(int _arraylength, int xCount) {
 | 
				
			||||||
	int count;
 | 
					 | 
				
			||||||
	double sum = 0.0;
 | 
						double sum = 0.0;
 | 
				
			||||||
	double *ptr;
 | 
						double *ptr;
 | 
				
			||||||
	// printf("*window\t\t*base\t\txMean\n\n");
 | 
						// printf("*window\t\t*base\t\txMean\n\n");
 | 
				
			||||||
| 
						 | 
					@ -715,3 +772,5 @@ double windowXMean(int _arraylength, int xCount) {
 | 
				
			||||||
	//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
 | 
						//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
 | 
				
			||||||
	return sum / (double)_arraylength;
 | 
						return sum / (double)_arraylength;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,62 @@
 | 
				
			||||||
 | 
					<!DOCTYPE html>
 | 
				
			||||||
 | 
					<html>
 | 
				
			||||||
 | 
						<head>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							NLMSvariants | Graphical Output ||
 | 
				
			||||||
 | 
							<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
 | 
				
			||||||
 | 
							<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
 | 
				
			||||||
 | 
							<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
 | 
				
			||||||
 | 
							<script>
 | 
				
			||||||
 | 
								function clicksvg(e){
 | 
				
			||||||
 | 
									id = e.id
 | 
				
			||||||
 | 
									graph = document.getElementById("svg_" + id);
 | 
				
			||||||
 | 
									if(graph.style.visibility == "hidden" || !graph.style.visibility){
 | 
				
			||||||
 | 
										graph.style.visibility = "visible";
 | 
				
			||||||
 | 
									}else{
 | 
				
			||||||
 | 
										graph.style.visibility = "hidden";
 | 
				
			||||||
 | 
									}
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
					</script>
 | 
				
			||||||
 | 
						</head>
 | 
				
			||||||
 | 
					<body>
 | 
				
			||||||
 | 
						<svg height="1200" viewBox="100 50  400 -400" width="3000" version="1.1"
 | 
				
			||||||
 | 
						     xmlns="http://www.w3.org/2000/svg">
 | 
				
			||||||
 | 
						  <desc>NLMSvariants output graph
 | 
				
			||||||
 | 
						  </desc>
 | 
				
			||||||
 | 
						<defs>
 | 
				
			||||||
 | 
						        <pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
 | 
				
			||||||
 | 
						            <path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
 | 
				
			||||||
 | 
						        </pattern>
 | 
				
			||||||
 | 
						        <pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
 | 
				
			||||||
 | 
						            <rect width="100" height="100" fill="url(#smallGrid)"></rect>
 | 
				
			||||||
 | 
						            <path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
 | 
				
			||||||
 | 
						        </pattern>
 | 
				
			||||||
 | 
						    </defs>
 | 
				
			||||||
 | 
						    <rect fill="white" height="1200" width="3000" y="0"></rect>
 | 
				
			||||||
 | 
						    <rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
 | 
				
			||||||
 | 
						    <g transform="translate(0,0) scale(1, 1)">
 | 
				
			||||||
 | 
						        <line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
 | 
				
			||||||
 | 
						        <line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
 | 
				
			||||||
 | 
						    </g>
 | 
				
			||||||
 | 
						    <g transform="translate(200, 400) scale(1,-1)">
 | 
				
			||||||
 | 
						        <path d="M0 0
 | 
				
			||||||
 | 
						        <text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
 | 
				
			||||||
 | 
						        <text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
 | 
				
			||||||
 | 
						        <text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
 | 
				
			||||||
 | 
						        <text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
 | 
				
			||||||
 | 
						    </g>
 | 
				
			||||||
 | 
						</svg>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							<table width = "100%" border = 1>
 | 
				
			||||||
 | 
							<tr align = "top">
 | 
				
			||||||
 | 
								<td colspan = "2" bgcolor = "#fefefe">
 | 
				
			||||||
 | 
								  <h1>
 | 
				
			||||||
 | 
								    <font color="blue">Eingangswert</font> |
 | 
				
			||||||
 | 
							            <font color="red">direkter Vorgaenger</font> |
 | 
				
			||||||
 | 
						 	            <font color="green">letzter Mittelwert</font>
 | 
				
			||||||
 | 
							          </h1>
 | 
				
			||||||
 | 
								</td>
 | 
				
			||||||
 | 
							</tr>
 | 
				
			||||||
 | 
					</body>
 | 
				
			||||||
 | 
					<html>
 | 
				
			||||||
		Loading…
	
		Reference in New Issue