This commit is contained in:
kbecke23 2018-05-14 13:38:18 +02:00
commit 262bf65bbf
3 changed files with 989 additions and 94 deletions

774
bin/NLMSsingleweights.c Normal file
View File

@ -0,0 +1,774 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
//
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#define NUMBER_OF_SAMPLES 1000
#define WINDOWSIZE 5
#define tracking 40 //Count of weights
#define learnrate 0.8
#define PURE_WEIGHTS 0
#define USED_WEIGHTS 1
#define RESULTS 3
#define DIRECT_PREDECESSOR 2
#define LOCAL_MEAN 4
#define TEST_VALUES 5
#define DIFFERENTIAL_PREDECESSOR 6
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
//double x[] = { 0.0 };
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
/* *ppm read, copy, write* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]);
//void weightsLogger(double *weights, int var);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(double *weights);
void localMean(double *weights);
//void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(double *weights);
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
double windowXMean(int _arraylength, int xCount);
int main(int argc, char **argv) {
double weights[WINDOWSIZE] = { 0.0 };
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
char fileName[50];
int i, xLength;
imagePixel_t *image;
image = rdPPM("beaches.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image);
printf("%d\n", xLength);
FILE* fp6 = fopen(fileName, "r");
colorSamples(fp6);
srand((unsigned int)time(NULL));
for (i = 0; i < WINDOWSIZE; i++) {
//_x[i] += ((255.0 / M) * i); // Init test values
// for (int k = 0; k < WINDOWSIZE; k++) {
weights[i] = rndm(); // Init weights
// }
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i < WINDOWSIZE; i++) {
// for (k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d]%lf\n", i, weights[i]);
}
// }
fclose(fp0);
// math magic
/* for (i = 0; i < NUMBER_OF_SAMPLES; i++){
for (k = 0; k < WINDOWSIZE; k++){
local_weights[k][i] = weights[k][i];
printf("ALT::%f\n", local_weights[k][i]);
}
}*/
localMean(weights);
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
directPredecessor(weights);
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
differentialPredecessor(weights);
mkSvgGraph(points);
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
*/
// getchar();
printf("\nDONE!\n");
}
/*
======================================================================================================
localMean
Variant (1/3), substract local mean.
======================================================================================================
*/
void localMean(double *weights) {
double local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE);
char fileName[50];
double xError[2048]; // includes e(n)
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n=====================================LocalMean=====================================\n");
double xMean = xSamples[0];
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { //get predicted value
xPredicted += (local_weights[i] * (xSamples[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { //get xSquared
xSquared += pow(xSamples[xCount - i] - xMean, 2);
// printf("xSquared:%f\n", xSquared);
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
//printf("%f\n", xSquared);
for (i = 1; i < _arrayLength; i++) { //update weights
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
// printf("NEU::%lf\n", local_weights[i]);
}
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
// write in file
mkFileName(fileName, sizeof(fileName), RESULTS);
FILE *fp2 = fopen(fileName, "w");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2);
fclose(fp4);
// weightsLogger( local_weights, USED_WEIGHTS );
//mkSvgGraph(points);
}
/*
======================================================================================================
directPredecessor
Variant (2/3),
substract direct predecessor
======================================================================================================
*/
void directPredecessor(double *weights) {
double local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual = 0.0;
double xPredicted = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
// mkSvgGraph(points);
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3);
}
/*
======================================================================================================
differentialPredecessor
variant (3/3),
differenital predecessor.
======================================================================================================
*/
void differentialPredecessor(double *weights) {
double local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xPredicted = 0.0;
double xActual = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
xActual = xSamples[xCount +1];
xPredicted = 0.0;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xSamples[xCount], xError[xCount]);
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
if (xSquared == 0.0 ){
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
printf("NEU::%lf\n", local_weights[i]);
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
//mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp6);
}
/*
======================================================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
======================================================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
======================================================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
======================================================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id];
}
/*
======================================================================================================
myLogger
Logs x,y points to svg graph
======================================================================================================
*/
/*
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
fclose(fp);
}
*/
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n");
}
/*
======================================================================================================
sum_array
Sum of all elements in x within a defined length
======================================================================================================
*/
double sum_array(double x[], int xlength) {
int i = 0;
double sum = 0.0;
if (xlength != 0) {
for (i = 0; i < xlength; i++) {
sum += x[i];
}
}
return sum;
}
/*
======================================================================================================
popNanLength
returns length of new array without NAN values
======================================================================================================
*/
double *popNAN(double *xError, int xErrorLength) {
int i, counter;
double *tmp = NULL;
double *more_tmp = NULL;
//tmp = realloc( noNAN, xErrorLength * sizeof(double) );
for ( i = 0; i < xErrorLength; i++ ) {
counter ++;
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
}
}
/* for (i = 0; i < xErrorLength; i++) {
if (!isnan(xError[i])) {
tmp[i] = xError[i];
counter++;
}
}
*/
//realloc(noNAN, counter * sizeof(double));
//int tmpLength = sizeof(noNAN) / sizeof(noNAN[0]);
//memcpy(xError, tmp, tmpLength);
//return xError;
return tmp;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
======================================================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
======================================================================================================
rndm
fills a double variable with random value and returns it
======================================================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
======================================================================================================
mkSvgGraph
parses template.svg and writes results in said template
======================================================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("graphResults.html", "w");
char line[512];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
while (!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line, strlen(line));
// printf("%s\n", line);
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
//puts(buffer);
}
/*
======================================================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
======================================================================================================
*/
static imagePixel_t *rdPPM(char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
======================================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image. Build for debugging
======================================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================================
ppmColorChannel
gets one of the rgb color channels and writes them to a file
======================================================================================================
*/
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
// int length = 1000; // (image->x * image->y) / 3;
int i = 0;
if (image) {
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
fprintf(fp, "%d\n", image->data[i].green);
}
}
fclose(fp);
return NUMBER_OF_SAMPLES;
}
/*
======================================================================================================
colorSamples
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
======================================================================================================
*/
void colorSamples(FILE* fp) {
int i = 0;
char buffer[NUMBER_OF_SAMPLES];
while (!feof(fp)) {
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i;
}
}
fclose(fp);
}
double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
// printf("*window\t\t*base\t\txMean\n\n");
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
//window = xCount - _arraylength
//base = window - _arraylength;
//sum = 0.0;
//for( count = 0; count < _arraylength; count++){
sum += *ptr;
// printf("%f\n", *base);
//}
}
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
return sum / (double)_arraylength;
}

View File

@ -13,7 +13,7 @@
#include <string.h> #include <string.h>
#include <float.h> // DBL_MAX #include <float.h> // DBL_MAX
#define NUMBER_OF_SAMPLES 1000 #define NUMBER_OF_SAMPLES 500
#define WINDOWSIZE 5 #define WINDOWSIZE 5
#define tracking 40 //Count of weights #define tracking 40 //Count of weights
#define learnrate 0.8 #define learnrate 0.8
@ -32,7 +32,6 @@ typedef SSIZE_T ssize_t;
//double x[] = { 0.0 }; //double x[] = { 0.0 };
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 }; double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
/* *svg graph building* */ /* *svg graph building* */
typedef struct { typedef struct {
@ -57,33 +56,35 @@ void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void colorSamples(FILE* fp); // stores color channel values in xSamples[] void colorSamples(FILE* fp); // stores color channel values in xSamples[]
/* *file handling* */ /* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId); char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id); char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]); void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]); void mkSvgGraph(point_t points[]);
//void weightsLogger(double *weights, int var);
/* *rand seed* */ /* *rand seed* */
double r2(void); double r2(void);
double rndm(void); double rndm(void);
/* *math* */ /* *math* */
double sum_array(double x[], int length); double sum_array(double x[], int length);
void directPredecessor(void); void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void localMean(void); void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(void); void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values //void differentialPredecessor(double *weights);
double *popNAN(double *xError); //return new array without NAN values
double windowXMean(int _arraylength, int xCount); double windowXMean(int _arraylength, int xCount);
int main(int argc, char **argv) { //int main(int argc, char **argv) {
int main( void ) {
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
char fileName[50]; char fileName[50];
int i, k, xLength; int i,k, xLength;
int *colorChannel;
imagePixel_t *image; imagePixel_t *image;
image = rdPPM("beaches.ppm");
image = rdPPM("cow.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES); mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w"); FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image); xLength = ppmColorChannel(fp5, image);
@ -95,30 +96,39 @@ int main(int argc, char **argv) {
srand((unsigned int)time(NULL)); srand((unsigned int)time(NULL));
for (i = 0; i < NUMBER_OF_SAMPLES; i++) { for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
// _x[i] += ((255.0 / M) * i); // Init test values //_x[i] += ((255.0 / M) * i); // Init test values
for (int k = 0; k < WINDOWSIZE; k++) { for (int k = 0; k < WINDOWSIZE; k++) {
w[k][i] = rndm(); // Init weights weights[k][i] = rndm(); // Init weights
} }
} }
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens // save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w"); FILE *fp0 = fopen(fileName, "w");
for (i = 0; i <= tracking; i++) { for (i = 0; i < tracking; i++) {
for (k = 0; k < WINDOWSIZE; k++) { for (k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]); fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
} }
} }
fclose(fp0); fclose(fp0);
// math magic // math magic
localMean(); /* for (i = 0; i < NUMBER_OF_SAMPLES; i++){
//directPredecessor(); for (k = 0; k < WINDOWSIZE; k++){
//differentialPredecessor(); local_weights[k][i] = weights[k][i];
printf("ALT::%f\n", local_weights[k][i]);
}
}*/
localMean(weights);
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
// directPredecessor(weights);
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
// differentialPredecessor(weights);
mkSvgGraph(points);
// save test_array after math magic happened // save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) ); // memset( fileName, '\0', sizeof(fileName) );
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS); /* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w"); FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) { for (i = 0; i < tracking; i++) {
for (int k = 0; k < WINDOWSIZE; k++) { for (int k = 0; k < WINDOWSIZE; k++) {
@ -127,10 +137,9 @@ int main(int argc, char **argv) {
} }
fclose(fp1); fclose(fp1);
*/
// getchar(); // getchar();
printf("DONE!"); printf("\nDONE!\n");
} }
@ -144,9 +153,13 @@ Variant (1/3), substract local mean.
====================================================================================================== ======================================================================================================
*/ */
void localMean(void) { void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double *local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
char fileName[50]; char fileName[50];
double xError[NUMBER_OF_SAMPLES]; // includes e(n) double xError[2048]; // includes e(n)
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var; int xCount = 0, i; // runtime var;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
@ -154,17 +167,14 @@ void localMean(void) {
fprintf(fp4, "\n=====================================LocalMean=====================================\n"); fprintf(fp4, "\n=====================================LocalMean=====================================\n");
double xMean = xSamples[0]; double xMean = xSamples[0];
double weightedSum = 0.0;
double filterOutput = 0.0;
double xSquared = 0.0; double xSquared = 0.0;
double xPredicted = 0.0; double xPredicted = 0.0;
double xActual = 0.0; double xActual = 0.0;
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var //double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength); //printf("xCount:%d, length:%d\n", xCount, _arrayLength);
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount)); // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
@ -173,12 +183,12 @@ void localMean(void) {
// weightedSum += _x[ xCount-1 ] * w[xCount][0]; // weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { //get predicted value for (i = 1; i < _arrayLength; i++) { //get predicted value
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xMean)); xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
} }
xPredicted += xMean; xPredicted += xMean;
xError[xCount] = xActual - xPredicted; xError[xCount] = xActual - xPredicted;
printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual); // printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
points[xCount].xVal[1] = xCount; points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted; points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount; points[xCount].xVal[4] = xCount;
@ -186,42 +196,47 @@ void localMean(void) {
xSquared = 0.0; xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { //get xSquared for (i = 1; i < _arrayLength; i++) { //get xSquared
//xSquared += pow(xSamples[xCount - i], 2);
xSquared += pow(xSamples[xCount - i] - xMean, 2); xSquared += pow(xSamples[xCount - i] - xMean, 2);
printf("xSquared:%f\n", xSquared); // printf("xSquared:%f\n", xSquared);
} }
if (xSquared == 0.0) { // returns Pred: -1.#IND00 if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0; xSquared = 1.0;
} }
//printf("%f\n", xSquared); //printf("%f\n", xSquared);
for (i = 1; i < _arrayLength; i++) { //update weights for (i = 1; i < _arrayLength; i++) { //update weights
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared); local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
// printf("NEU::%lf\n", local_weights[i][xCount]);
} }
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]); fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
} }
int xErrorLength = sizeof(xError) / sizeof(xError[0]); // int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength); // printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength); popNAN(xError); // delete NAN values from xError[]
printf("nach:%d", xErrorLength); // printf("%lf", xError[499]);
xErrorLength = sizeof(xError) / sizeof(xError[0]); double xErrorLength = xError[0]; // Watch popNAN()!
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xError, xErrorLength) / xErrorLength; double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0; double deviation = 0.0;
// Mean square // Mean square
for (i = 0; i < xErrorLength - 1; i++) { for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2); deviation += pow(xError[i] - mean, 2);
} }
deviation /= xErrorLength; deviation /= xErrorLength;
// write in file // write in file
mkFileName(fileName, sizeof(fileName), RESULTS); mkFileName(fileName, sizeof(fileName), RESULTS);
FILE *fp2 = fopen(fileName, "w"); FILE *fp2 = fopen(fileName, "w");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean); fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2); fclose(fp2);
free(local_weights);
fclose(fp4); fclose(fp4);
// weightsLogger( local_weights, USED_WEIGHTS );
mkSvgGraph(points);
} }
/* /*
@ -235,29 +250,34 @@ substract direct predecessor
====================================================================================================== ======================================================================================================
*/ */
void directPredecessor(void) { void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512]; char fileName[512];
double xError[2048]; double xError[2048];
int xCount = 0, i; int xCount = 0, i;
double xActual; double xActual = 0.0;
int xPredicted = 0.0; double xPredicted = 0.0;
// File handling // File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w"); FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n"); fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
//double xPartArray[xCount]; //includes all values at the size of runtime var for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount; //int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount; int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
printf("xCount:%d, length:%d\n", xCount, _arrayLength); //printf("xCount:%d, length:%d\n", xCount, _arrayLength);
double xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0; // printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
printf("%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0; xPredicted = 0.0;
xActual = xSamples[xCount + 1]; xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { for (i = 1; i < _arrayLength; i++) {
xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1])); xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
} }
xPredicted += xSamples[xCount - 1]; xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted; xError[xCount] = xActual - xPredicted;
@ -274,13 +294,13 @@ void directPredecessor(void) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
} }
for (i = 1; i < _arrayLength; i++) { for (i = 1; i < _arrayLength; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared); local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
} }
} }
int xErrorLength = sizeof(xError) / sizeof(xError[0]); int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength); printf("vor:%d", xErrorLength);
popNAN(xError, xErrorLength); popNAN(xError);
printf("nach:%d", xErrorLength); printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]); xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength; double mean = sum_array(xError, xErrorLength) / xErrorLength;
@ -291,8 +311,9 @@ void directPredecessor(void) {
} }
deviation /= xErrorLength; deviation /= xErrorLength;
mkSvgGraph(points); // mkSvgGraph(points);
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3); fclose(fp3);
} }
@ -307,24 +328,30 @@ differenital predecessor.
====================================================================================================== ======================================================================================================
*/ */
void differentialPredecessor(void) { void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512]; char fileName[512];
double xError[2048]; double xError[2048];
int xCount = 0, i; int xCount = 0, i;
double xActual; double xPredicted = 0.0;
double xActual = 0.0;
// File handling // File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w"); FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n"); fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) { for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
xActual = xSamples[xCount + 1];
double xPredicted = 0.0;
for (i = 1; i < xCount; i++) { int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1])); xPredicted = 0.0;
xActual = xSamples[xCount + 1];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
} }
xPredicted += xSamples[xCount - 1]; xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted; xError[xCount] = xActual - xPredicted;
@ -336,14 +363,19 @@ void differentialPredecessor(void) {
points[xCount].yVal[6] = xError[xCount]; points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0; double xSquared = 0.0;
for (i = 1; i < xCount; i++) { for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
} }
for (i = 1; i < xCount; i++) { for (i = 1; i < _arrayLength; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared); local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
} }
} }
int xErrorLength = sizeof(xError) / sizeof(xError[0]); int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength; double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0; double deviation = 0.0;
@ -352,8 +384,9 @@ void differentialPredecessor(void) {
} }
deviation /= xErrorLength; deviation /= xErrorLength;
mkSvgGraph(points); //mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean); fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp6); fclose(fp6);
@ -411,6 +444,22 @@ Logs x,y points to svg graph
====================================================================================================== ======================================================================================================
*/ */
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
fclose(fp);
}
void bufferLogger(char *buffer, point_t points[]) { void bufferLogger(char *buffer, point_t points[]) {
int i; int i;
char _buffer[512] = ""; char _buffer[512] = "";
@ -471,21 +520,32 @@ returns length of new array without NAN values
====================================================================================================== ======================================================================================================
*/ */
double *popNAN(double *xError, int xErrorLength) { double *popNAN(double *xError) {
int i, counter; int i, counter = 1;
double noNAN[10]; double tmpLength = 0.0;
realloc(noNAN, xErrorLength); double *tmp = NULL;
double *more_tmp = NULL;
for (i = 0; i < xErrorLength; i++) { // printf("LENGTH: %d", xErrorLength);
if (!isnan(xError[i])) {
noNAN[i] = xError[i]; for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
counter++; counter ++;
} more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
printf("xERROR:%lf\n", tmp[counter - 1]);
tmpLength++;
}
} }
realloc(noNAN, counter * sizeof(double)); counter += 1;
int noNANLength = sizeof(noNAN) / sizeof(noNAN[0]); more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
memcpy(xError, noNAN, noNANLength); tmp = more_tmp;
return xError; tmp = &tmpLength; // Length of array has to be stored in tmp[0],
// Cause length is needed later on in the math functions.
// xError counting has to begin with 1 in the other functions !
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
return tmp;
} }
/* /*
@ -530,8 +590,8 @@ parses template.svg and writes results in said template
*/ */
void mkSvgGraph(point_t points[]) { void mkSvgGraph(point_t points[]) {
FILE *input = fopen("template.svg", "r"); FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("output.svg", "w"); FILE *target = fopen("graphResults.html", "w");
char line[512]; char line[512];
char firstGraph[15] = { "<path d=\"M0 0" }; char firstGraph[15] = { "<path d=\"M0 0" };
@ -681,8 +741,6 @@ creating the SVG graph
*/ */
void colorSamples(FILE* fp) { void colorSamples(FILE* fp) {
int i = 0; int i = 0;
int d, out;
double f;
char buffer[NUMBER_OF_SAMPLES]; char buffer[NUMBER_OF_SAMPLES];
while (!feof(fp)) { while (!feof(fp)) {
@ -698,20 +756,21 @@ void colorSamples(FILE* fp) {
} }
double windowXMean(int _arraylength, int xCount) { double windowXMean(int _arraylength, int xCount) {
int count;
double sum = 0.0; double sum = 0.0;
double *ptr; double *ptr;
// printf("*window\t\t*base\t\txMean\n\n"); // printf("*window\t\t*base\t\txMean\n\n");
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
//window = xCount - _arraylength //window = xCount - _arraylength
//base = window - _arraylength; //base = window - _arraylength;
//sum = 0.0; //sum = 0.0;
//for( count = 0; count < _arraylength; count++){ //for( count = 0; count < _arraylength; count++){
sum += *ptr; sum += *ptr;
// printf("%f\n", *base); // printf("%f\n", *base);
//} //}
} }
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW)); //printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
return sum / (double)_arraylength; return sum / (double)_arraylength;
} }

View File

@ -0,0 +1,62 @@
<!DOCTYPE html>
<html>
<head>
NLMSvariants | Graphical Output ||
<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
<script>
function clicksvg(e){
id = e.id
graph = document.getElementById("svg_" + id);
if(graph.style.visibility == "hidden" || !graph.style.visibility){
graph.style.visibility = "visible";
}else{
graph.style.visibility = "hidden";
}
}
</script>
</head>
<body>
<svg height="1200" viewBox="100 50 400 -400" width="3000" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<desc>NLMSvariants output graph
</desc>
<defs>
<pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
<path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
</pattern>
<pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
<rect width="100" height="100" fill="url(#smallGrid)"></rect>
<path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
</pattern>
</defs>
<rect fill="white" height="1200" width="3000" y="0"></rect>
<rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
<g transform="translate(0,0) scale(1, 1)">
<line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
<line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
</g>
<g transform="translate(200, 400) scale(1,-1)">
<path d="M0 0
<text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
<text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
<text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
<text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
</g>
</svg>
<table width = "100%" border = 1>
<tr align = "top">
<td colspan = "2" bgcolor = "#fefefe">
<h1>
<font color="blue">Eingangswert</font> |
<font color="red">direkter Vorgaenger</font> |
<font color="green">letzter Mittelwert</font>
</h1>
</td>
</tr>
</body>
<html>