Merge branch 'master' of https://github.com/FBRDNLMS/NLMSvariants
This commit is contained in:
commit
262bf65bbf
|
@ -0,0 +1,774 @@
|
|||
//
|
||||
//
|
||||
// NLMSvariants.c
|
||||
//
|
||||
// Created by FBRDNLMS on 26.04.18.
|
||||
//
|
||||
//
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <float.h> // DBL_MAX
|
||||
|
||||
#define NUMBER_OF_SAMPLES 1000
|
||||
#define WINDOWSIZE 5
|
||||
#define tracking 40 //Count of weights
|
||||
#define learnrate 0.8
|
||||
#define PURE_WEIGHTS 0
|
||||
#define USED_WEIGHTS 1
|
||||
#define RESULTS 3
|
||||
#define DIRECT_PREDECESSOR 2
|
||||
#define LOCAL_MEAN 4
|
||||
#define TEST_VALUES 5
|
||||
#define DIFFERENTIAL_PREDECESSOR 6
|
||||
#define RGB_COLOR 255
|
||||
#if defined(_MSC_VER)
|
||||
#include <BaseTsd.h>
|
||||
typedef SSIZE_T ssize_t;
|
||||
#endif
|
||||
|
||||
//double x[] = { 0.0 };
|
||||
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
|
||||
|
||||
/* *svg graph building* */
|
||||
typedef struct {
|
||||
double xVal[7];
|
||||
double yVal[7];
|
||||
}point_t;
|
||||
|
||||
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
|
||||
|
||||
/* *ppm read, copy, write* */
|
||||
typedef struct {
|
||||
unsigned char red, green, blue;
|
||||
}colorChannel_t;
|
||||
|
||||
typedef struct {
|
||||
int x, y;
|
||||
colorChannel_t *data;
|
||||
}imagePixel_t;
|
||||
|
||||
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
|
||||
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
|
||||
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
|
||||
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
|
||||
|
||||
/* *file handling* */
|
||||
char * mkFileName(char* buffer, size_t max_len, int suffixId);
|
||||
char *fileSuffix(int id);
|
||||
void myLogger(FILE* fp, point_t points[]);
|
||||
void mkSvgGraph(point_t points[]);
|
||||
//void weightsLogger(double *weights, int var);
|
||||
/* *rand seed* */
|
||||
double r2(void);
|
||||
double rndm(void);
|
||||
|
||||
/* *math* */
|
||||
double sum_array(double x[], int length);
|
||||
void directPredecessor(double *weights);
|
||||
void localMean(double *weights);
|
||||
//void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
|
||||
void differentialPredecessor(double *weights);
|
||||
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
|
||||
double windowXMean(int _arraylength, int xCount);
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
double weights[WINDOWSIZE] = { 0.0 };
|
||||
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
|
||||
char fileName[50];
|
||||
int i, xLength;
|
||||
imagePixel_t *image;
|
||||
|
||||
image = rdPPM("beaches.ppm");
|
||||
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
|
||||
FILE* fp5 = fopen(fileName, "w");
|
||||
xLength = ppmColorChannel(fp5, image);
|
||||
printf("%d\n", xLength);
|
||||
|
||||
FILE* fp6 = fopen(fileName, "r");
|
||||
colorSamples(fp6);
|
||||
|
||||
srand((unsigned int)time(NULL));
|
||||
|
||||
for (i = 0; i < WINDOWSIZE; i++) {
|
||||
//_x[i] += ((255.0 / M) * i); // Init test values
|
||||
// for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
weights[i] = rndm(); // Init weights
|
||||
// }
|
||||
}
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
|
||||
// save plain test_array before math magic happens
|
||||
FILE *fp0 = fopen(fileName, "w");
|
||||
for (i = 0; i < WINDOWSIZE; i++) {
|
||||
// for (k = 0; k < WINDOWSIZE; k++) {
|
||||
fprintf(fp0, "[%d]%lf\n", i, weights[i]);
|
||||
}
|
||||
// }
|
||||
fclose(fp0);
|
||||
|
||||
|
||||
// math magic
|
||||
/* for (i = 0; i < NUMBER_OF_SAMPLES; i++){
|
||||
for (k = 0; k < WINDOWSIZE; k++){
|
||||
local_weights[k][i] = weights[k][i];
|
||||
printf("ALT::%f\n", local_weights[k][i]);
|
||||
}
|
||||
}*/
|
||||
localMean(weights);
|
||||
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
|
||||
directPredecessor(weights);
|
||||
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
|
||||
differentialPredecessor(weights);
|
||||
mkSvgGraph(points);
|
||||
// save test_array after math magic happened
|
||||
// memset( fileName, '\0', sizeof(fileName) );
|
||||
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
|
||||
FILE *fp1 = fopen(fileName, "w");
|
||||
for (i = 0; i < tracking; i++) {
|
||||
for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
|
||||
}
|
||||
|
||||
}
|
||||
fclose(fp1);
|
||||
*/
|
||||
// getchar();
|
||||
printf("\nDONE!\n");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
localMean
|
||||
|
||||
Variant (1/3), substract local mean.
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
void localMean(double *weights) {
|
||||
double local_weights[WINDOWSIZE];
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE);
|
||||
char fileName[50];
|
||||
double xError[2048]; // includes e(n)
|
||||
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
|
||||
int xCount = 0, i; // runtime var;
|
||||
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
|
||||
FILE* fp4 = fopen(fileName, "w");
|
||||
fprintf(fp4, "\n=====================================LocalMean=====================================\n");
|
||||
|
||||
double xMean = xSamples[0];
|
||||
double xSquared = 0.0;
|
||||
double xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
//double xPartArray[1000]; //includes all values at the size of runtime var
|
||||
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
||||
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
|
||||
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
||||
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
||||
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount + 1];
|
||||
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) { //get predicted value
|
||||
xPredicted += (local_weights[i] * (xSamples[xCount - i] - xMean));
|
||||
|
||||
}
|
||||
xPredicted += xMean;
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
|
||||
points[xCount].xVal[1] = xCount;
|
||||
points[xCount].yVal[1] = xPredicted;
|
||||
points[xCount].xVal[4] = xCount;
|
||||
points[xCount].yVal[4] = xError[xCount];
|
||||
|
||||
xSquared = 0.0;
|
||||
for (i = 1; i < _arrayLength; i++) { //get xSquared
|
||||
xSquared += pow(xSamples[xCount - i] - xMean, 2);
|
||||
// printf("xSquared:%f\n", xSquared);
|
||||
}
|
||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
xSquared = 1.0;
|
||||
}
|
||||
//printf("%f\n", xSquared);
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) { //update weights
|
||||
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
|
||||
// printf("NEU::%lf\n", local_weights[i]);
|
||||
}
|
||||
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
||||
|
||||
}
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError, xErrorLength);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
// Mean square
|
||||
for (i = 0; i < xErrorLength - 1; i++) {
|
||||
deviation += pow(xError[i] - mean, 2);
|
||||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
// write in file
|
||||
mkFileName(fileName, sizeof(fileName), RESULTS);
|
||||
FILE *fp2 = fopen(fileName, "w");
|
||||
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
|
||||
fclose(fp2);
|
||||
fclose(fp4);
|
||||
|
||||
// weightsLogger( local_weights, USED_WEIGHTS );
|
||||
//mkSvgGraph(points);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
directPredecessor
|
||||
|
||||
Variant (2/3),
|
||||
substract direct predecessor
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
void directPredecessor(double *weights) {
|
||||
double local_weights[WINDOWSIZE];
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
|
||||
char fileName[512];
|
||||
double xError[2048];
|
||||
int xCount = 0, i;
|
||||
double xActual = 0.0;
|
||||
double xPredicted = 0.0;
|
||||
// File handling
|
||||
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
|
||||
FILE *fp3 = fopen(fileName, "w");
|
||||
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
|
||||
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
//double xPartArray[1000]; //includes all values at the size of runtime var
|
||||
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
||||
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
||||
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
||||
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount + 1];
|
||||
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (local_weights[i] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
||||
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
||||
points[xCount].xVal[2] = xCount;
|
||||
points[xCount].yVal[2] = xPredicted;
|
||||
points[xCount].xVal[5] = xCount;
|
||||
points[xCount].yVal[5] = xError[xCount];
|
||||
|
||||
double xSquared = 0.0;
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||
}
|
||||
}
|
||||
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError, xErrorLength);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
for (i = 0; i < xErrorLength - 1; i++) {
|
||||
deviation += pow(xError[i] - mean, 2);
|
||||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
// mkSvgGraph(points);
|
||||
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
||||
|
||||
fclose(fp3);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
differentialPredecessor
|
||||
|
||||
variant (3/3),
|
||||
differenital predecessor.
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
void differentialPredecessor(double *weights) {
|
||||
double local_weights[WINDOWSIZE];
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE );
|
||||
char fileName[512];
|
||||
double xError[2048];
|
||||
int xCount = 0, i;
|
||||
double xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
|
||||
// File handling
|
||||
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
|
||||
FILE *fp6 = fopen(fileName, "w");
|
||||
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
xActual = xSamples[xCount +1];
|
||||
xPredicted = 0.0;
|
||||
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (local_weights[i] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
||||
fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xSamples[xCount], xError[xCount]);
|
||||
points[xCount].xVal[3] = xCount;
|
||||
points[xCount].yVal[3] = xPredicted;
|
||||
points[xCount].xVal[6] = xCount;
|
||||
points[xCount].yVal[6] = xError[xCount];
|
||||
double xSquared = 0.0;
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
if (xSquared == 0.0 ){
|
||||
xSquared = 1.0;
|
||||
}
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
local_weights[i] = local_weights[i] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
||||
printf("NEU::%lf\n", local_weights[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError, xErrorLength);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
for (i = 0; i < xErrorLength - 1; i++) {
|
||||
deviation += pow(xError[i] - mean, 2);
|
||||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
//mkSvgGraph(points);
|
||||
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
||||
|
||||
fclose(fp6);
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
mkFileName
|
||||
|
||||
Writes the current date plus the suffix with index suffixId
|
||||
into the given buffer. If the total length is longer than max_len,
|
||||
only max_len characters will be written.
|
||||
|
||||
======================================================================================================
|
||||
|
||||
*/
|
||||
|
||||
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
|
||||
const char * format_str = "%Y-%m-%d_%H_%M_%S";
|
||||
size_t date_len;
|
||||
const char * suffix = fileSuffix(suffixId);
|
||||
time_t now = time(NULL);
|
||||
|
||||
strftime(buffer, max_len, format_str, localtime(&now));
|
||||
date_len = strlen(buffer);
|
||||
strncat(buffer, suffix, max_len - date_len);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
fileSuffix
|
||||
|
||||
Contains and returns every suffix for all existing filenames
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
char * fileSuffix(int id) {
|
||||
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
|
||||
return suffix[id];
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
myLogger
|
||||
|
||||
Logs x,y points to svg graph
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
/*
|
||||
void weightsLogger (double weights[WINDOWSIZE], int val ) {
|
||||
char fileName[512];
|
||||
int i;
|
||||
mkFileName(fileName, sizeof(fileName), val);
|
||||
FILE* fp = fopen(fileName, "wa");
|
||||
for (i = 0; i < WINDOWSIZE; i++) {
|
||||
// for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
fprintf(fp, "[%d]%lf\n", i, weights[i]);
|
||||
// }
|
||||
}
|
||||
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
|
||||
fclose(fp);
|
||||
}
|
||||
*/
|
||||
|
||||
void bufferLogger(char *buffer, point_t points[]) {
|
||||
int i;
|
||||
char _buffer[512] = "";
|
||||
|
||||
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
|
||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
|
||||
strcat(buffer, _buffer);
|
||||
}
|
||||
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
||||
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPrediceted from localMean
|
||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
|
||||
strcat(buffer, _buffer);
|
||||
}
|
||||
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
||||
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
|
||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
|
||||
strcat(buffer, _buffer);
|
||||
}
|
||||
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
||||
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
|
||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].xVal[3]);
|
||||
strcat(buffer, _buffer);
|
||||
}
|
||||
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
sum_array
|
||||
|
||||
Sum of all elements in x within a defined length
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
double sum_array(double x[], int xlength) {
|
||||
int i = 0;
|
||||
double sum = 0.0;
|
||||
|
||||
if (xlength != 0) {
|
||||
for (i = 0; i < xlength; i++) {
|
||||
sum += x[i];
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
popNanLength
|
||||
|
||||
returns length of new array without NAN values
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
double *popNAN(double *xError, int xErrorLength) {
|
||||
int i, counter;
|
||||
double *tmp = NULL;
|
||||
double *more_tmp = NULL;
|
||||
//tmp = realloc( noNAN, xErrorLength * sizeof(double) );
|
||||
|
||||
for ( i = 0; i < xErrorLength; i++ ) {
|
||||
counter ++;
|
||||
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
|
||||
if ( !isnan(xError[i]) ) {
|
||||
tmp = more_tmp;
|
||||
tmp[counter - 1] = xError[i];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* for (i = 0; i < xErrorLength; i++) {
|
||||
if (!isnan(xError[i])) {
|
||||
tmp[i] = xError[i];
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
//realloc(noNAN, counter * sizeof(double));
|
||||
//int tmpLength = sizeof(noNAN) / sizeof(noNAN[0]);
|
||||
//memcpy(xError, tmp, tmpLength);
|
||||
//return xError;
|
||||
return tmp;
|
||||
|
||||
}
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
r2
|
||||
|
||||
returns a random double value between 0 and 1
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
double r2(void) {
|
||||
return((rand() % 10000) / 10000.0);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
rndm
|
||||
|
||||
fills a double variable with random value and returns it
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
double rndm(void) {
|
||||
double rndmval = r2();
|
||||
return rndmval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
mkSvgGraph
|
||||
|
||||
parses template.svg and writes results in said template
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
void mkSvgGraph(point_t points[]) {
|
||||
FILE *input = fopen("graphResults_template.html", "r");
|
||||
FILE *target = fopen("graphResults.html", "w");
|
||||
char line[512];
|
||||
char firstGraph[15] = { "<path d=\"M0 0" };
|
||||
|
||||
if (input == NULL) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
char buffer[131072] = "";
|
||||
|
||||
memset(buffer, '\0', sizeof(buffer));
|
||||
while (!feof(input)) {
|
||||
fgets(line, 512, input);
|
||||
strncat(buffer, line, strlen(line));
|
||||
// printf("%s\n", line);
|
||||
if (strstr(line, firstGraph) != NULL) {
|
||||
bufferLogger(buffer, points);
|
||||
}
|
||||
|
||||
}
|
||||
fprintf(target, buffer);
|
||||
//puts(buffer);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
rdPPM
|
||||
|
||||
reads data from file of type PPM, stores colorchannels in a struct in the
|
||||
size of given picture
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
static imagePixel_t *rdPPM(char *fileName) {
|
||||
char buffer[16];
|
||||
imagePixel_t *image;
|
||||
int c, rgbColor;
|
||||
|
||||
FILE *fp = fopen(fileName, "rb");
|
||||
if (!fp) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (!fgets(buffer, sizeof(buffer), fp)) {
|
||||
perror(fileName);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (buffer[0] != 'P' || buffer[1] != '6') {
|
||||
fprintf(stderr, "No PPM file format\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
|
||||
if (!image) {
|
||||
fprintf(stderr, "malloc() failed");
|
||||
}
|
||||
c = getc(fp);
|
||||
while (c == '#') {
|
||||
while (getc(fp) != '\n');
|
||||
c = getc(fp);
|
||||
}
|
||||
ungetc(c, fp);
|
||||
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
|
||||
fprintf(stderr, "Invalid image size in %s\n", fileName);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (fscanf(fp, "%d", &rgbColor) != 1) {
|
||||
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
|
||||
}
|
||||
if (rgbColor != RGB_COLOR) {
|
||||
fprintf(stderr, "Invalid image color range in %s\n", fileName);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
while (fgetc(fp) != '\n');
|
||||
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
|
||||
if (!image) {
|
||||
fprintf(stderr, "malloc() failed");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
|
||||
fprintf(stderr, "Loading image failed");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fclose(fp);
|
||||
return image;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
mkPpmFile
|
||||
|
||||
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
|
||||
carbon copy of the source image. Build for debugging
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
void mkPpmFile(char *fileName, imagePixel_t *image) {
|
||||
FILE* fp = fopen(fileName, "wb");
|
||||
if (!fp) {
|
||||
fprintf(stderr, "Opening file failed.");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(fp, "P6\n");
|
||||
fprintf(fp, "%d %d\n", image->x, image->y);
|
||||
fprintf(fp, "%d\n", RGB_COLOR);
|
||||
fwrite(image->data, 3 * image->x, image->y, fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
ppmColorChannel
|
||||
|
||||
gets one of the rgb color channels and writes them to a file
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
|
||||
// int length = 1000; // (image->x * image->y) / 3;
|
||||
int i = 0;
|
||||
|
||||
if (image) {
|
||||
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
|
||||
fprintf(fp, "%d\n", image->data[i].green);
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
return NUMBER_OF_SAMPLES;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
======================================================================================================
|
||||
|
||||
colorSamples
|
||||
|
||||
reads colorChannel values from file and stores them in xSamples as well as points datatype for
|
||||
creating the SVG graph
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
void colorSamples(FILE* fp) {
|
||||
int i = 0;
|
||||
char buffer[NUMBER_OF_SAMPLES];
|
||||
|
||||
while (!feof(fp)) {
|
||||
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
|
||||
sscanf(buffer, "%lf", &xSamples[i]);
|
||||
//printf("%lf\n", xSamples[i] );
|
||||
points[i].yVal[0] = xSamples[i];
|
||||
points[i].xVal[0] = i;
|
||||
++i;
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
double windowXMean(int _arraylength, int xCount) {
|
||||
double sum = 0.0;
|
||||
double *ptr;
|
||||
// printf("*window\t\t*base\t\txMean\n\n");
|
||||
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
|
||||
//window = xCount - _arraylength
|
||||
//base = window - _arraylength;
|
||||
//sum = 0.0;
|
||||
//for( count = 0; count < _arraylength; count++){
|
||||
sum += *ptr;
|
||||
// printf("%f\n", *base);
|
||||
|
||||
//}
|
||||
}
|
||||
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
|
||||
return sum / (double)_arraylength;
|
||||
}
|
||||
|
||||
|
|
@ -13,7 +13,7 @@
|
|||
#include <string.h>
|
||||
#include <float.h> // DBL_MAX
|
||||
|
||||
#define NUMBER_OF_SAMPLES 1000
|
||||
#define NUMBER_OF_SAMPLES 500
|
||||
#define WINDOWSIZE 5
|
||||
#define tracking 40 //Count of weights
|
||||
#define learnrate 0.8
|
||||
|
@ -32,7 +32,6 @@ typedef SSIZE_T ssize_t;
|
|||
|
||||
//double x[] = { 0.0 };
|
||||
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
|
||||
double w[WINDOWSIZE][NUMBER_OF_SAMPLES] = { { 0.0 },{ 0.0 } };
|
||||
|
||||
/* *svg graph building* */
|
||||
typedef struct {
|
||||
|
@ -62,28 +61,30 @@ char * mkFileName(char* buffer, size_t max_len, int suffixId);
|
|||
char *fileSuffix(int id);
|
||||
void myLogger(FILE* fp, point_t points[]);
|
||||
void mkSvgGraph(point_t points[]);
|
||||
|
||||
//void weightsLogger(double *weights, int var);
|
||||
/* *rand seed* */
|
||||
double r2(void);
|
||||
double rndm(void);
|
||||
|
||||
/* *math* */
|
||||
double sum_array(double x[], int length);
|
||||
void directPredecessor(void);
|
||||
void localMean(void);
|
||||
void differentialPredecessor(void);
|
||||
double *popNAN(double *xError, int xErrorLength); //return new array without NAN values
|
||||
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
|
||||
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
|
||||
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
|
||||
//void differentialPredecessor(double *weights);
|
||||
double *popNAN(double *xError); //return new array without NAN values
|
||||
double windowXMean(int _arraylength, int xCount);
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
//int main(int argc, char **argv) {
|
||||
int main( void ) {
|
||||
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
|
||||
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
|
||||
char fileName[50];
|
||||
int i,k, xLength;
|
||||
int *colorChannel;
|
||||
imagePixel_t *image;
|
||||
|
||||
|
||||
image = rdPPM("cow.ppm");
|
||||
image = rdPPM("beaches.ppm");
|
||||
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
|
||||
FILE* fp5 = fopen(fileName, "w");
|
||||
xLength = ppmColorChannel(fp5, image);
|
||||
|
@ -97,28 +98,37 @@ int main(int argc, char **argv) {
|
|||
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
|
||||
//_x[i] += ((255.0 / M) * i); // Init test values
|
||||
for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
w[k][i] = rndm(); // Init weights
|
||||
weights[k][i] = rndm(); // Init weights
|
||||
}
|
||||
}
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
|
||||
// save plain test_array before math magic happens
|
||||
FILE *fp0 = fopen(fileName, "w");
|
||||
for (i = 0; i <= tracking; i++) {
|
||||
for (i = 0; i < tracking; i++) {
|
||||
for (k = 0; k < WINDOWSIZE; k++) {
|
||||
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
|
||||
fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
|
||||
}
|
||||
}
|
||||
fclose(fp0);
|
||||
|
||||
|
||||
// math magic
|
||||
localMean();
|
||||
//directPredecessor();
|
||||
//differentialPredecessor();
|
||||
/* for (i = 0; i < NUMBER_OF_SAMPLES; i++){
|
||||
for (k = 0; k < WINDOWSIZE; k++){
|
||||
local_weights[k][i] = weights[k][i];
|
||||
printf("ALT::%f\n", local_weights[k][i]);
|
||||
}
|
||||
}*/
|
||||
localMean(weights);
|
||||
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
|
||||
// directPredecessor(weights);
|
||||
// memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
|
||||
// differentialPredecessor(weights);
|
||||
mkSvgGraph(points);
|
||||
// save test_array after math magic happened
|
||||
// memset( fileName, '\0', sizeof(fileName) );
|
||||
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
|
||||
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
|
||||
FILE *fp1 = fopen(fileName, "w");
|
||||
for (i = 0; i < tracking; i++) {
|
||||
for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
|
@ -127,10 +137,9 @@ int main(int argc, char **argv) {
|
|||
|
||||
}
|
||||
fclose(fp1);
|
||||
|
||||
*/
|
||||
// getchar();
|
||||
printf("DONE!");
|
||||
|
||||
printf("\nDONE!\n");
|
||||
}
|
||||
|
||||
|
||||
|
@ -144,9 +153,13 @@ Variant (1/3), substract local mean.
|
|||
======================================================================================================
|
||||
*/
|
||||
|
||||
void localMean(void) {
|
||||
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
|
||||
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
|
||||
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
|
||||
// double *local_weights[WINDOWSIZE];
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
|
||||
char fileName[50];
|
||||
double xError[NUMBER_OF_SAMPLES]; // includes e(n)
|
||||
double xError[2048]; // includes e(n)
|
||||
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
|
||||
int xCount = 0, i; // runtime var;
|
||||
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
|
||||
|
@ -154,13 +167,10 @@ void localMean(void) {
|
|||
fprintf(fp4, "\n=====================================LocalMean=====================================\n");
|
||||
|
||||
double xMean = xSamples[0];
|
||||
double weightedSum = 0.0;
|
||||
double filterOutput = 0.0;
|
||||
double xSquared = 0.0;
|
||||
double xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
//double xPartArray[1000]; //includes all values at the size of runtime var
|
||||
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
||||
|
@ -173,12 +183,12 @@ void localMean(void) {
|
|||
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) { //get predicted value
|
||||
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xMean));
|
||||
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
|
||||
|
||||
}
|
||||
xPredicted += xMean;
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
|
||||
// printf("Pred: %f\t\tActual:%f\n", xPredicted, xActual);
|
||||
points[xCount].xVal[1] = xCount;
|
||||
points[xCount].yVal[1] = xPredicted;
|
||||
points[xCount].xVal[4] = xCount;
|
||||
|
@ -186,42 +196,47 @@ void localMean(void) {
|
|||
|
||||
xSquared = 0.0;
|
||||
for (i = 1; i < _arrayLength; i++) { //get xSquared
|
||||
//xSquared += pow(xSamples[xCount - i], 2);
|
||||
xSquared += pow(xSamples[xCount - i] - xMean, 2);
|
||||
printf("xSquared:%f\n", xSquared);
|
||||
// printf("xSquared:%f\n", xSquared);
|
||||
}
|
||||
if (xSquared == 0.0) { // returns Pred: -1.#IND00
|
||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
xSquared = 1.0;
|
||||
}
|
||||
//printf("%f\n", xSquared);
|
||||
for (i = 1; i < _arrayLength; i++) { //update weights
|
||||
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
|
||||
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
|
||||
// printf("NEU::%lf\n", local_weights[i][xCount]);
|
||||
}
|
||||
|
||||
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
|
||||
|
||||
}
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError, xErrorLength);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
// int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
// printf("vor:%d", xErrorLength);
|
||||
popNAN(xError); // delete NAN values from xError[]
|
||||
// printf("%lf", xError[499]);
|
||||
double xErrorLength = xError[0]; // Watch popNAN()!
|
||||
printf("Xerrorl:%lf", xErrorLength);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
// Mean square
|
||||
for (i = 0; i < xErrorLength - 1; i++) {
|
||||
for (i = 1; i < xErrorLength; i++) {
|
||||
deviation += pow(xError[i] - mean, 2);
|
||||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
|
||||
// write in file
|
||||
mkFileName(fileName, sizeof(fileName), RESULTS);
|
||||
FILE *fp2 = fopen(fileName, "w");
|
||||
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
|
||||
fclose(fp2);
|
||||
free(local_weights);
|
||||
fclose(fp4);
|
||||
|
||||
// weightsLogger( local_weights, USED_WEIGHTS );
|
||||
mkSvgGraph(points);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -235,29 +250,34 @@ substract direct predecessor
|
|||
======================================================================================================
|
||||
*/
|
||||
|
||||
void directPredecessor(void) {
|
||||
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
|
||||
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
|
||||
|
||||
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
|
||||
char fileName[512];
|
||||
double xError[2048];
|
||||
int xCount = 0, i;
|
||||
double xActual;
|
||||
int xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
double xPredicted = 0.0;
|
||||
// File handling
|
||||
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
|
||||
FILE *fp3 = fopen(fileName, "w");
|
||||
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\n");
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
|
||||
//double xPartArray[xCount]; //includes all values at the size of runtime var
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
//double xPartArray[1000]; //includes all values at the size of runtime var
|
||||
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
|
||||
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
||||
printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
||||
double xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
||||
printf("%f\n", windowXMean(_arrayLength, xCount));
|
||||
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
|
||||
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount + 1];
|
||||
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (w[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
||||
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
@ -274,13 +294,13 @@ void directPredecessor(void) {
|
|||
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||
}
|
||||
}
|
||||
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError, xErrorLength);
|
||||
popNAN(xError);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
|
@ -291,8 +311,9 @@ void directPredecessor(void) {
|
|||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
mkSvgGraph(points);
|
||||
// mkSvgGraph(points);
|
||||
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
||||
|
||||
fclose(fp3);
|
||||
}
|
||||
|
||||
|
@ -307,24 +328,30 @@ differenital predecessor.
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void differentialPredecessor(void) {
|
||||
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
|
||||
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
|
||||
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
|
||||
|
||||
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
|
||||
char fileName[512];
|
||||
double xError[2048];
|
||||
int xCount = 0, i;
|
||||
double xActual;
|
||||
double xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
|
||||
// File handling
|
||||
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
|
||||
FILE *fp6 = fopen(fileName, "w");
|
||||
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\n");
|
||||
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES + 1; xCount++) {
|
||||
xActual = xSamples[xCount + 1];
|
||||
double xPredicted = 0.0;
|
||||
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
|
||||
|
||||
for (i = 1; i < xCount; i++) {
|
||||
xPredicted += (w[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
||||
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount + 1];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
@ -336,14 +363,19 @@ void differentialPredecessor(void) {
|
|||
points[xCount].yVal[6] = xError[xCount];
|
||||
double xSquared = 0.0;
|
||||
|
||||
for (i = 1; i < xCount; i++) {
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
for (i = 1; i < xCount; i++) {
|
||||
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
||||
}
|
||||
}
|
||||
|
||||
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
printf("vor:%d", xErrorLength);
|
||||
popNAN(xError);
|
||||
printf("nach:%d", xErrorLength);
|
||||
xErrorLength = sizeof(xError) / sizeof(xError[0]);
|
||||
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
||||
|
@ -352,8 +384,9 @@ void differentialPredecessor(void) {
|
|||
}
|
||||
deviation /= xErrorLength;
|
||||
|
||||
mkSvgGraph(points);
|
||||
//mkSvgGraph(points);
|
||||
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
|
||||
|
||||
fclose(fp6);
|
||||
|
||||
|
||||
|
@ -411,6 +444,22 @@ Logs x,y points to svg graph
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
|
||||
void weightsLogger (double weights[WINDOWSIZE], int val ) {
|
||||
char fileName[512];
|
||||
int i;
|
||||
mkFileName(fileName, sizeof(fileName), val);
|
||||
FILE* fp = fopen(fileName, "wa");
|
||||
for (i = 0; i < WINDOWSIZE; i++) {
|
||||
// for (int k = 0; k < WINDOWSIZE; k++) {
|
||||
fprintf(fp, "[%d]%lf\n", i, weights[i]);
|
||||
// }
|
||||
}
|
||||
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
|
||||
void bufferLogger(char *buffer, point_t points[]) {
|
||||
int i;
|
||||
char _buffer[512] = "";
|
||||
|
@ -471,21 +520,32 @@ returns length of new array without NAN values
|
|||
======================================================================================================
|
||||
*/
|
||||
|
||||
double *popNAN(double *xError, int xErrorLength) {
|
||||
int i, counter;
|
||||
double noNAN[10];
|
||||
realloc(noNAN, xErrorLength);
|
||||
double *popNAN(double *xError) {
|
||||
int i, counter = 1;
|
||||
double tmpLength = 0.0;
|
||||
double *tmp = NULL;
|
||||
double *more_tmp = NULL;
|
||||
|
||||
for (i = 0; i < xErrorLength; i++) {
|
||||
if (!isnan(xError[i])) {
|
||||
noNAN[i] = xError[i];
|
||||
// printf("LENGTH: %d", xErrorLength);
|
||||
|
||||
for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
|
||||
counter ++;
|
||||
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
|
||||
if ( !isnan(xError[i]) ) {
|
||||
tmp = more_tmp;
|
||||
tmp[counter - 1] = xError[i];
|
||||
printf("xERROR:%lf\n", tmp[counter - 1]);
|
||||
tmpLength++;
|
||||
}
|
||||
}
|
||||
realloc(noNAN, counter * sizeof(double));
|
||||
int noNANLength = sizeof(noNAN) / sizeof(noNAN[0]);
|
||||
memcpy(xError, noNAN, noNANLength);
|
||||
return xError;
|
||||
counter += 1;
|
||||
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
|
||||
tmp = more_tmp;
|
||||
tmp = &tmpLength; // Length of array has to be stored in tmp[0],
|
||||
// Cause length is needed later on in the math functions.
|
||||
// xError counting has to begin with 1 in the other functions !
|
||||
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
|
||||
return tmp;
|
||||
|
||||
}
|
||||
/*
|
||||
|
@ -530,8 +590,8 @@ parses template.svg and writes results in said template
|
|||
*/
|
||||
|
||||
void mkSvgGraph(point_t points[]) {
|
||||
FILE *input = fopen("template.svg", "r");
|
||||
FILE *target = fopen("output.svg", "w");
|
||||
FILE *input = fopen("graphResults_template.html", "r");
|
||||
FILE *target = fopen("graphResults.html", "w");
|
||||
char line[512];
|
||||
char firstGraph[15] = { "<path d=\"M0 0" };
|
||||
|
||||
|
@ -681,8 +741,6 @@ creating the SVG graph
|
|||
*/
|
||||
void colorSamples(FILE* fp) {
|
||||
int i = 0;
|
||||
int d, out;
|
||||
double f;
|
||||
char buffer[NUMBER_OF_SAMPLES];
|
||||
|
||||
while (!feof(fp)) {
|
||||
|
@ -698,7 +756,6 @@ void colorSamples(FILE* fp) {
|
|||
}
|
||||
|
||||
double windowXMean(int _arraylength, int xCount) {
|
||||
int count;
|
||||
double sum = 0.0;
|
||||
double *ptr;
|
||||
// printf("*window\t\t*base\t\txMean\n\n");
|
||||
|
@ -715,3 +772,5 @@ double windowXMean(int _arraylength, int xCount) {
|
|||
//printf("\n%lf\t%lf\t%lf\n", *ptr, *ptr2, (sum/(double)WINDOW));
|
||||
return sum / (double)_arraylength;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
|
||||
NLMSvariants | Graphical Output ||
|
||||
<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
|
||||
<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
|
||||
<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
|
||||
<script>
|
||||
function clicksvg(e){
|
||||
id = e.id
|
||||
graph = document.getElementById("svg_" + id);
|
||||
if(graph.style.visibility == "hidden" || !graph.style.visibility){
|
||||
graph.style.visibility = "visible";
|
||||
}else{
|
||||
graph.style.visibility = "hidden";
|
||||
}
|
||||
}
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<svg height="1200" viewBox="100 50 400 -400" width="3000" version="1.1"
|
||||
xmlns="http://www.w3.org/2000/svg">
|
||||
<desc>NLMSvariants output graph
|
||||
</desc>
|
||||
<defs>
|
||||
<pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
|
||||
<path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
|
||||
</pattern>
|
||||
<pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
|
||||
<rect width="100" height="100" fill="url(#smallGrid)"></rect>
|
||||
<path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
|
||||
</pattern>
|
||||
</defs>
|
||||
<rect fill="white" height="1200" width="3000" y="0"></rect>
|
||||
<rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
|
||||
<g transform="translate(0,0) scale(1, 1)">
|
||||
<line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
|
||||
<line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
|
||||
</g>
|
||||
<g transform="translate(200, 400) scale(1,-1)">
|
||||
<path d="M0 0
|
||||
<text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
|
||||
<text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
|
||||
<text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
|
||||
<text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
|
||||
</g>
|
||||
</svg>
|
||||
|
||||
|
||||
<table width = "100%" border = 1>
|
||||
<tr align = "top">
|
||||
<td colspan = "2" bgcolor = "#fefefe">
|
||||
<h1>
|
||||
<font color="blue">Eingangswert</font> |
|
||||
<font color="red">direkter Vorgaenger</font> |
|
||||
<font color="green">letzter Mittelwert</font>
|
||||
</h1>
|
||||
</td>
|
||||
</tr>
|
||||
</body>
|
||||
<html>
|
Loading…
Reference in New Issue