added stuff

This commit is contained in:
Friese 2018-05-15 08:29:04 +02:00
parent 0c6f694ea4
commit 2b6d7c8f1c
4 changed files with 876 additions and 0 deletions

View File

@ -0,0 +1,6 @@
all: NLMSvariants.c
gcc -o lms NLMSvariants.c
clean:
$(RM) lms

View File

@ -0,0 +1,789 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
//
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#define NUMBER_OF_SAMPLES 500
#define WINDOWSIZE 5
#define learnrate 0.8
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
enum fileSuffix_t{ // used in conjunction with mkFileName()
PURE_WEIGHTS,
USED_WEIGHTS,
DIRECT_PREDECESSOR,
RESULTS,
LOCAL_MEAN,
TEST_VALUES,
DIFFERENTIAL_PREDECESSOR
};
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
/* *ppm read, copy, write* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]);
//void weightsLogger(double *weights, int var);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
//void differentialPredecessor(double *weights);
double *popNAN(double *xError); //return new array without NAN values
double windowXMean(int _arraylength, int xCount);
//int main(int argc, char **argv) {
int main( void ) {
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
char fileName[50];
int i,k, xLength;
imagePixel_t *image;
image = rdPPM("cow.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image);
printf("%d\n", xLength);
FILE* fp6 = fopen(fileName, "r");
colorSamples(fp6);
srand( (unsigned int)time(NULL) );
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
weights[k][i] = rndm(); // Init weights
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
}
}
fclose(fp0);
// math magic
localMean(weights);
directPredecessor(weights);
differentialPredecessor(weights);
mkSvgGraph(points);
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
*/
printf("\nDONE!\n");
}
/*
======================================================================================================
localMean
Variant (1/3), substract local mean.
======================================================================================================
*/
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double *local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
char fileName[50];
double xError[2048]; // includes e(n)
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n=====================================LocalMean=====================================\nNo.\txPredicted\txActual\t\txError\n");
double xMean = xSamples[0];
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { //get predicted value
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { //get xSquared
xSquared += pow(xSamples[xCount - i] - xMean, 2);
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) { //update weights
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
}
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "w");
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
free(local_weights);
fclose(fp4);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
directPredecessor
Variant (2/3),
substract direct predecessor
======================================================================================================
*/
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual = 0.0;
double xPredicted = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp3);
//fclose(fp2);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
differentialPredecessor
variant (3/3),
differential predecessor.
======================================================================================================
*/
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xPredicted = 0.0;
double xActual = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
/* int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
//mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
*/
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
fclose(fp6);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
======================================================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
======================================================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
======================================================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id];
}
/*
======================================================================================================
myLogger
Logs x,y points to svg graph
======================================================================================================
*/
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
fclose(fp);
}
/*
======================================================================================================
bufferLogger
formats output of mkSvgGraph -- Please open graphResults.html to see the output--
======================================================================================================
*/
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPredicted from localMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
}
/*
======================================================================================================
sum_array
Sum of all elements in x within a defined length
======================================================================================================
*/
double sum_array(double x[], int xlength) {
int i = 0;
double sum = 0.0;
if (xlength != 0) {
for (i = 0; i < xlength; i++) {
sum += x[i];
}
}
return sum;
}
/*
======================================================================================================
popNanLength
returns length of new array without NAN values
======================================================================================================
*/
double *popNAN(double *xError) {
int i, counter = 1;
double tmpLength = 0.0;
double *tmp = NULL;
double *more_tmp = NULL;
for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
counter ++;
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
printf("xERROR:%lf\n", tmp[counter - 1]);
tmpLength++;
}
}
counter += 1;
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
tmp = more_tmp;
*tmp = tmpLength; // Length of array has to be stored in tmp[0],
// Cause length is needed later on in the math functions.
// xError counting has to begin with 1 in the other functions !
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
return tmp;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
======================================================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
======================================================================================================
rndm
fills a double variable with random value and returns it
======================================================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
======================================================================================================
mkSvgGraph
parses template.svg and writes results in said template
======================================================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("graphResults.html", "w");
char line[512];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
while (!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line, strlen(line));
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
}
/*
======================================================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
======================================================================================================
*/
static imagePixel_t *rdPPM(char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
======================================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image. Build for debugging
======================================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================================
ppmColorChannel
gets one of the rgb color channels and writes them to a file
======================================================================================================
*/
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
// int length = (image->x * image->y) / 3;
int i = 0;
if (image) {
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
fprintf(fp, "%d\n", image->data[i].green);
}
}
fclose(fp);
return NUMBER_OF_SAMPLES;
}
/*
======================================================================================================
colorSamples
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
======================================================================================================
*/
void colorSamples(FILE* fp) {
int i = 0;
char buffer[NUMBER_OF_SAMPLES];
while (!feof(fp)) {
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i;
}
}
fclose(fp);
}
/*
======================================================================================================
windowXMean
returns mean value of given input, which has a length of WINDOWSIZE
======================================================================================================
*/
double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
sum += *ptr;
}
return sum / (double)_arraylength;
}

View File

@ -0,0 +1,19 @@
## Installation
Use the make file or compile it anywhere else.
`$ make`.
It had to be ANSI C so it even compiles on VS.
## Features
This little piece of code compares 3 different implementations of a least mean square filter.
+ local mean
+ direct predecessor
+ differential predecessor
Greyscale PPM files can be used for input at this iteration. Output will be genreeated as .txt file with predicted value genereated by the filter and its error value as well as given actual value from the PPM file. Furthermore there is an output as an svg graph to compare the implementatiosn on a visual level. Just open __graphResults.html__.
You can hide graphs by clicking on its name for better visibility.
Use `$ ./lms -h` for help.

View File

@ -0,0 +1,62 @@
<!DOCTYPE html>
<html>
<head>
NLMSvariants | Graphical Output ||
<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
<script>
function clicksvg(e){
id = e.id
graph = document.getElementById("svg_" + id);
if(graph.style.visibility == "hidden" || !graph.style.visibility){
graph.style.visibility = "visible";
}else{
graph.style.visibility = "hidden";
}
}
</script>
</head>
<body>
<svg height="1200" viewBox="100 50 400 -400" width="3000" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<desc>NLMSvariants output graph
</desc>
<defs>
<pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
<path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
</pattern>
<pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
<rect width="100" height="100" fill="url(#smallGrid)"></rect>
<path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
</pattern>
</defs>
<rect fill="white" height="1200" width="3000" y="0"></rect>
<rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
<g transform="translate(0,0) scale(1, 1)">
<line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
<line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
</g>
<g transform="translate(200, 400) scale(1,-1)">
<path d="M0 0
<text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
<text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
<text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
<text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
</g>
</svg>
<table width = "100%" border = 1>
<tr align = "top">
<td colspan = "2" bgcolor = "#fefefe">
<h1>
<font color="blue">Eingangswert</font> |
<font color="red">direkter Vorgaenger</font> |
<font color="green">letzter Mittelwert</font>
</h1>
</td>
</tr>
</body>
<html>