added comments
This commit is contained in:
		
							parent
							
								
									74cb76f23d
								
							
						
					
					
						commit
						45804b1916
					
				| 
						 | 
					@ -80,11 +80,11 @@ int main( int argc, char **argv ) {
 | 
				
			||||||
	unsigned int *seed = NULL;
 | 
						unsigned int *seed = NULL;
 | 
				
			||||||
	unsigned k, xLength;
 | 
						unsigned k, xLength;
 | 
				
			||||||
	unsigned int windowSize = 5;
 | 
						unsigned int windowSize = 5;
 | 
				
			||||||
	unsigned int samplesCount = 501;
 | 
						unsigned int samplesCount = 512;
 | 
				
			||||||
	char *stdcolor = "green";
 | 
						char *stdcolor = "green";
 | 
				
			||||||
	colorChannel = stdcolor;
 | 
						colorChannel = stdcolor;
 | 
				
			||||||
	unsigned int uint_buffer[1];
 | 
						unsigned int uint_buffer[1];
 | 
				
			||||||
	double learnrate = 0.8;
 | 
						double learnrate = 0.4;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	while( (argc > 1) && (argv[1][0] == '-')  ) {	// Parses parameters from stdin
 | 
						while( (argc > 1) && (argv[1][0] == '-')  ) {	// Parses parameters from stdin
 | 
				
			||||||
| 
						 | 
					@ -132,51 +132,52 @@ int main( int argc, char **argv ) {
 | 
				
			||||||
		++argv;
 | 
							++argv;
 | 
				
			||||||
		--argc;
 | 
							--argc;
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	init_mldata_t(windowSize, samplesCount, learnrate);
 | 
						init_mldata_t ( windowSize, samplesCount, learnrate );
 | 
				
			||||||
	xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount );
 | 
						xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount ); 	// Resize input values
 | 
				
			||||||
	points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount);
 | 
						points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount);		// Resize points
 | 
				
			||||||
	imagePixel_t *image;	
 | 
						imagePixel_t *image;									
 | 
				
			||||||
	char fileName[50];
 | 
						image = rdPPM(inputfile);							// Set Pointer on input values
 | 
				
			||||||
 | 
						
 | 
				
			||||||
	image = rdPPM(inputfile);
 | 
						char fileName[50];								// Logfiles and their names 
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
						mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
				
			||||||
	FILE* fp5 = fopen(fileName, "w");
 | 
						FILE* fp5 = fopen(fileName, "w");
 | 
				
			||||||
	xLength = ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values
 | 
						xLength = ppmColorChannel(fp5, image, colorChannel, mlData); 			// Returns length of ppm input values, debugging
 | 
				
			||||||
	printf("%d\n", xLength);
 | 
					 | 
				
			||||||
	FILE* fp6 = fopen(fileName, "r");
 | 
						FILE* fp6 = fopen(fileName, "r");
 | 
				
			||||||
	colorSamples(fp6, mlData);
 | 
						colorSamples(fp6, mlData);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if ( (seed != NULL) ){ 			
 | 
						if ( (seed != NULL) ){ 			
 | 
				
			||||||
		srand( *seed );					// Seed for random number generating
 | 
							srand( *seed );								// Seed for random number generating
 | 
				
			||||||
		printf("srand is reproducable : %u", seed);
 | 
							printf("srand is reproducable\n", seed);
 | 
				
			||||||
	} else {
 | 
						} else {
 | 
				
			||||||
		srand( (unsigned int)time(NULL) );
 | 
							srand( (unsigned int)time(NULL) );
 | 
				
			||||||
		printf("srand from time\n");			// Default seed is time(NULL)
 | 
							printf("srand depends on time\n");					// Default seed is time(NULL)
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
						printf("generated weights:\n");
 | 
				
			||||||
//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
					//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
				
			||||||
		for (k = 0; k < mlData->windowSize; k++) {
 | 
							for (k = 0; k < mlData->windowSize; k++) {			
 | 
				
			||||||
		mlData->weights[k] = rndm(); 		// Init random weights
 | 
							mlData->weights[k] = rndm(); 						// Init random weights
 | 
				
			||||||
		printf("%lf\n", mlData->weights[k]);
 | 
							printf("%lf\n", mlData->weights[k]);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
//	}
 | 
					//	}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
						mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);				// Logfile weights
 | 
				
			||||||
	FILE *fp0 = fopen(fileName, "w");
 | 
						FILE *fp0 = fopen(fileName, "w");
 | 
				
			||||||
//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
					//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
				
			||||||
		for (k = 0; k < mlData->windowSize; k++) {
 | 
							for (k = 0; k < mlData->windowSize; k++) {
 | 
				
			||||||
			fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);	// Save generated weights to to file
 | 
								fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);	
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
//	}
 | 
					//	}
 | 
				
			||||||
	fclose(fp0);
 | 
						fclose(fp0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// math magic
 | 
						/* *math magic* */
 | 
				
			||||||
    	localMean ( mlData, points );
 | 
					    	localMean ( mlData, points );
 | 
				
			||||||
	directPredecessor ( mlData, points);
 | 
						directPredecessor ( mlData, points);
 | 
				
			||||||
	differentialPredecessor( mlData, points );
 | 
						differentialPredecessor( mlData, points );
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	mkSvgGraph(points);
 | 
						mkSvgGraph(points);								// Graph building
 | 
				
			||||||
	free(xSamples);
 | 
						free(xSamples);
 | 
				
			||||||
	free(points);
 | 
						free(points);
 | 
				
			||||||
 | 
						free(mlData);
 | 
				
			||||||
	printf("\nDONE!\n");
 | 
						printf("\nDONE!\n");
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -190,74 +191,71 @@ Variant (1/3), substract local mean.
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void localMean ( mldata_t *mlData, point_t points[] ) {
 | 
					void localMean ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
//	double (*local_weights)[WINDOWSIZE] =(double (*)[WINDOWSIZE]) malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
						double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1);		
 | 
				
			||||||
	//memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
						memcpy ( localWeights, mlData->weights, mlData->windowSize ); 					// Copy weights so they can be changed locally
 | 
				
			||||||
	double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1);
 | 
						
 | 
				
			||||||
	memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) ); // TODO: check size !!!
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	char fileName[50];
 | 
						char fileName[50];
 | 
				
			||||||
	double xError[2048]; // includes e(n)
 | 
						double xError[2048]; 										// Includes e(n)		
 | 
				
			||||||
	memset(xError, 0.0, mlData->samplesCount);// initialize xError-array with Zero
 | 
						memset(xError, 0.0, mlData->samplesCount);							// Initialize xError-array with Zero		
 | 
				
			||||||
	unsigned i, xCount = 0; // runtime var
 | 
						unsigned i, xCount = 0; 									// Runtime vars
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
						mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);						// Create Logfile and its filename
 | 
				
			||||||
	FILE* fp4 = fopen(fileName, "w");
 | 
						FILE* fp4 = fopen(fileName, "w");								
 | 
				
			||||||
	fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) );
 | 
						fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) );					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double xMean = xSamples[0];
 | 
						double xMean = xSamples[0];
 | 
				
			||||||
	double xSquared = 0.0;
 | 
						double xSquared = 0.0;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted
 | 
						for ( xCount = 1; xCount < mlData->samplesCount; xCount++ ) { 						// First value will not get predicted
 | 
				
			||||||
 | 
							unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount;	// Ensures corect length at start
 | 
				
			||||||
		unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount;
 | 
							xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;					
 | 
				
			||||||
		xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
					 | 
				
			||||||
		xPredicted = 0.0;
 | 
							xPredicted = 0.0;
 | 
				
			||||||
		xActual = xSamples[xCount];
 | 
							xActual = xSamples[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
							for ( i = 1; i < _arrayLength; i++ ) { 								// Get predicted value
 | 
				
			||||||
			xPredicted += (localWeights[i] * (xSamples[xCount - i] - xMean));
 | 
								xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xMean) );			
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		xPredicted += xMean;
 | 
							xPredicted += xMean;				
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;								// Get error value
 | 
				
			||||||
		xSquared = 0.0;
 | 
							xSquared = 0.0;
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
							for (i = 1; i < _arrayLength; i++) { 								// Get xSquared
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
								xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
							if ( xSquared == 0.0 ) { 									// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
			xSquared = 1.0;
 | 
								xSquared = 1.0;
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for ( i = 1; i < _arrayLength; i++ ) { //update weights
 | 
							for ( i = 1; i < _arrayLength; i++ ) { 								// Update weights
 | 
				
			||||||
			localWeights[ i + 1 ] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - i] - xMean) / xSquared );
 | 
								localWeights[ i + 1 ] = localWeights[i] + mlData->learnrate * xError[xCount]  		// Substract localMean
 | 
				
			||||||
 | 
									* ( (xSamples[xCount - i] - xMean) / xSquared );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
		fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);	
 | 
							fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);			// Write to logfile
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
		points[xCount].xVal[1] = xCount;
 | 
							points[xCount].xVal[1] = xCount;								// Save points so graph can be build later on
 | 
				
			||||||
		points[xCount].yVal[1] = xPredicted;
 | 
							points[xCount].yVal[1] = xPredicted;	
 | 
				
			||||||
		points[xCount].xVal[4] = xCount;
 | 
							points[xCount].xVal[4] = xCount;
 | 
				
			||||||
		points[xCount].yVal[4] = xError[xCount];
 | 
							points[xCount].yVal[4] = xError[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 									// delete NAN values from xError[]
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
						double  xErrorLength = *xErrorPtr; 									// Watch popNAN()!
 | 
				
			||||||
  	xErrorPtr[0] = 0.0;
 | 
					  	xErrorPtr[0] = 0.0;
 | 
				
			||||||
//	printf("Xerrorl:%lf", xErrorLength);
 | 
					//	printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;					// Mean 
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
						for (i = 1; i < xErrorLength; i++) {									// Mean square
 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
					 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;										// Deviation
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
	//FILE *fp2 = fopen(fileName, "w");
 | 
						//FILE *fp2 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
 | 
						fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);	// Write to logfile
 | 
				
			||||||
	//fclose(fp2);
 | 
						//fclose(fp2);
 | 
				
			||||||
	free(localWeights);
 | 
						free(localWeights);
 | 
				
			||||||
	fclose(fp4);
 | 
						fclose(fp4);
 | 
				
			||||||
| 
						 | 
					@ -277,14 +275,14 @@ substract direct predecessor
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
					void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
	double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
						double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
				
			||||||
	memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) );
 | 
						memcpy ( localWeights, mlData->weights, mlData->windowSize );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	unsigned xCount = 0, i;
 | 
						unsigned xCount = 0, i;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);						// Logfile and name handling
 | 
				
			||||||
	FILE *fp3 = fopen(fileName, "w");
 | 
						FILE *fp3 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) );
 | 
						fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) );
 | 
				
			||||||
	mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS);
 | 
						mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS);
 | 
				
			||||||
| 
						 | 
					@ -305,15 +303,19 @@ void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		double xSquared = 0.0;
 | 
							double xSquared = 0.0;
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); 					// substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							if ( xSquared == 0.0 ) { 											// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
		localWeights[i + 1] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
								xSquared = 1.0;
 | 
				
			||||||
		fprintf( fp9, "%lf\n", localWeights[i] );
 | 
							}
 | 
				
			||||||
 | 
							for ( i = 1; i < _arrayLength; i++ ) {										// Update weights
 | 
				
			||||||
 | 
								localWeights[i + 1] = localWeights[i] + mlData->learnrate * xError[xCount] 				
 | 
				
			||||||
 | 
									* ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);				
 | 
				
			||||||
 | 
								fprintf( fp9, "%lf\n", localWeights[i] );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
	        fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
						        fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);					// Write to logfile
 | 
				
			||||||
		points[xCount].xVal[2] = xCount; 		// Fill point_t array for graph building
 | 
							points[xCount].xVal[2] = xCount; 										// Fill point_t array for graph building
 | 
				
			||||||
		points[xCount].yVal[2] = xPredicted;
 | 
							points[xCount].yVal[2] = xPredicted;
 | 
				
			||||||
		points[xCount].xVal[5] = xCount;
 | 
							points[xCount].xVal[5] = xCount;
 | 
				
			||||||
		points[xCount].yVal[5] = xError[xCount];
 | 
							points[xCount].yVal[5] = xError[xCount];
 | 
				
			||||||
| 
						 | 
					@ -322,22 +324,20 @@ void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp9);
 | 
						fclose(fp9);
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 											// delete NAN values from xError[]
 | 
				
			||||||
	//printf("%lf", xErrorPtr[499]);
 | 
						double  xErrorLength = *xErrorPtr; 											// Watch popNAN()!
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
							xErrorPtr[0] = 0.0;												// Stored length in [0] , won't be used anyway. Bit dirty
 | 
				
			||||||
    xErrorPtr[0] = 0.0;
 | 
					 | 
				
			||||||
	//printf("Xerrorl:%lf", xErrorLength);
 | 
						//printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;							// Mean
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;													
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
					 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
						for (i = 1; i < xErrorLength; i++) {
 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);										// Mean square
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;												// Deviation
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
 | 
				
			||||||
 | 
					 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
	//FILE *fp2 = fopen(fileName, "wa");
 | 
						//FILE *fp2 = fopen(fileName, "wa");
 | 
				
			||||||
| 
						 | 
					@ -360,19 +360,19 @@ differential predecessor.
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
					void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
	double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
						double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
				
			||||||
	memcpy( localWeights, mlData->weights, sizeof(mlData->windowSize) );
 | 
						memcpy( localWeights, mlData->weights, mlData->windowSize );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	unsigned xCount = 0, i;
 | 
						unsigned xCount = 0, i;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// File handling
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);							// File handling
 | 
				
			||||||
	FILE *fp6 = fopen(fileName, "w");
 | 
						FILE *fp6 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) );
 | 
						fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted
 | 
							for (xCount = 1; xCount < mlData->samplesCount; xCount++) { 							// First value will not get predicted
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
 | 
							unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
 | 
				
			||||||
		xPredicted = 0.0;
 | 
							xPredicted = 0.0;
 | 
				
			||||||
| 
						 | 
					@ -385,10 +385,13 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		double xSquared = 0.0;
 | 
							double xSquared = 0.0;
 | 
				
			||||||
 | 
					 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); 					// Substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
 | 
							if ( xSquared == 0.0 ) { 											// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
 | 
								xSquared = 1.0;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			localWeights[i+1] = localWeights[i] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
								localWeights[i+1] = localWeights[i] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
| 
						 | 
					@ -401,21 +404,20 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 											// delete NAN values from xError[]
 | 
				
			||||||
	//printf("%lf", xErrorPtr[499]);
 | 
						double  xErrorLength = *xErrorPtr; 											// Watch popNAN()!
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
					 | 
				
			||||||
    	xErrorPtr[0] = 0.0;
 | 
					    	xErrorPtr[0] = 0.0;
 | 
				
			||||||
//	printf("Xerrorl:%lf", xErrorLength);
 | 
					//	printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
						
 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
						for (i = 1; i < xErrorLength; i++) {											// Mean square
 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
| 
						 | 
					@ -433,21 +435,21 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
mkFileName
 | 
					mkFileName
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Writes the current date plus the suffix with index suffixId
 | 
					Writes the current date plus suffix with index suffixId
 | 
				
			||||||
into the given buffer. If the total length is longer than max_len,
 | 
					into the given buffer. If the total length is longer than max_len,
 | 
				
			||||||
only max_len characters will be written.
 | 
					only max_len characters will be written.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
					char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
				
			||||||
	const char * format_str = "%Y-%m-%d_%H_%M_%S";
 | 
						const char * format_str = "%Y-%m-%d_%H_%M_%S";				// Date formatting
 | 
				
			||||||
	size_t date_len;
 | 
						size_t date_len;
 | 
				
			||||||
	const char * suffix = fileSuffix(suffixId);
 | 
						const char * suffix = fileSuffix(suffixId);
 | 
				
			||||||
	time_t now = time(NULL);
 | 
						time_t now = time(NULL);				
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	strftime(buffer, max_len, format_str, localtime(&now));
 | 
						strftime(buffer, max_len, format_str, localtime(&now));			// Get Date
 | 
				
			||||||
	date_len = strlen(buffer);
 | 
						date_len = strlen(buffer);
 | 
				
			||||||
	strncat(buffer, suffix, max_len - date_len);
 | 
						strncat(buffer, suffix, max_len - date_len);				// Concat filename
 | 
				
			||||||
	return buffer;
 | 
						return buffer;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -477,7 +479,7 @@ char * fileSuffix ( int id ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fileHeader
 | 
					fileHeader
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Contains and returns header for logfiles 
 | 
					Contains and returns header from logfiles 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -492,9 +494,9 @@ char * fileHeader ( int id ) {
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
myLogger
 | 
					weightsLogger
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Logs x,y points to svg graph
 | 
					Logs used weights to logfile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -532,22 +534,22 @@ void bufferLogger(char *buffer, point_t points[]) {
 | 
				
			||||||
	unsigned i;
 | 
						unsigned i;
 | 
				
			||||||
	char _buffer[512] = "";
 | 
						char _buffer[512] = "";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { // xActual
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) { 									// xActual
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { // xPredicted from localMean
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) {									// xPredicted from localMean
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i <= mlData->samplesCount - 1; i++) { //xPreddicted from directPredecessor
 | 
						for (i = 0; i <= mlData->samplesCount - 1; i++) { 									//xPredicted from directPredecessor
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { //xPredicted from diff Pred
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) { 									//xPredicted from diff Pred
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
| 
						 | 
					@ -578,9 +580,9 @@ double sum_array(double x[], int xlength) {
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
popNanLength
 | 
					popNan
 | 
				
			||||||
 | 
					
 | 
				
			||||||
returns length of new array without NAN values
 | 
					returns new array without NAN values 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -603,10 +605,8 @@ double *popNAN(double *xError) {
 | 
				
			||||||
	counter += 1;
 | 
						counter += 1;
 | 
				
			||||||
	more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
						more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
				
			||||||
	tmp = more_tmp;
 | 
						tmp = more_tmp;
 | 
				
			||||||
	*tmp = tmpLength; // Length of array has to be stored in tmp[0],
 | 
						*tmp = tmpLength; 								// Length of array is stored inside tmp[0]. tmp[0] is never used anyways
 | 
				
			||||||
				    // Cause length is needed later on in the math functions.
 | 
									    
 | 
				
			||||||
				    // xError counting has to begin with 1 in the other functions !
 | 
					 | 
				
			||||||
	printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
 | 
					 | 
				
			||||||
	return tmp;
 | 
						return tmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					@ -651,20 +651,20 @@ void mkSvgGraph(point_t points[]) {
 | 
				
			||||||
	FILE *input = fopen("graphResults_template.html", "r");
 | 
						FILE *input = fopen("graphResults_template.html", "r");
 | 
				
			||||||
	FILE *target = fopen("graphResults.html", "w");
 | 
						FILE *target = fopen("graphResults.html", "w");
 | 
				
			||||||
	char line[512];
 | 
						char line[512];
 | 
				
			||||||
	char firstGraph[15] = { "<path d=\"M0 0" };
 | 
						char firstGraph[15] = { "<path d=\"M0 0" };			// Position where points will be written after
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if (input == NULL) {
 | 
						if (input == NULL) {
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	char buffer[131072] = "";
 | 
						char buffer[131072] = "";					// Bit dirty
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	memset(buffer, '\0', sizeof(buffer));
 | 
						memset(buffer, '\0', sizeof(buffer));
 | 
				
			||||||
	while (!feof(input)) {
 | 
						while (!feof(input)) {						// parses file until "firstGraph" has been found 	
 | 
				
			||||||
		fgets(line, 512, input);
 | 
							fgets(line, 512, input);		
 | 
				
			||||||
		strncat(buffer, line, strlen(line));
 | 
							strncat(buffer, line, strlen(line));
 | 
				
			||||||
		if (strstr(line, firstGraph) != NULL) {
 | 
							if (strstr(line, firstGraph) != NULL) {			// Compares line <-> "firstGraph"
 | 
				
			||||||
			bufferLogger(buffer, points);
 | 
								bufferLogger(buffer, points);			// write points
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
| 
						 | 
					@ -708,18 +708,18 @@ static imagePixel_t *rdPPM(char *fileName) {
 | 
				
			||||||
		c = getc(fp);
 | 
							c = getc(fp);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	ungetc(c, fp);
 | 
						ungetc(c, fp);
 | 
				
			||||||
	if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
 | 
						if ( fscanf(fp, "%d %d", &image->x, &image->y) != 2 ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	if (fscanf(fp, "%d", &rgbColor) != 1) {
 | 
						if ( fscanf(fp, "%d", &rgbColor) != 1 ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	if (rgbColor != RGB_COLOR) {
 | 
						if ( rgbColor != RGB_COLOR ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	while (fgetc(fp) != '\n');
 | 
						while ( fgetc(fp) != '\n' );
 | 
				
			||||||
	image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
						image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
				
			||||||
	if (!image) {
 | 
						if (!image) {
 | 
				
			||||||
		fprintf(stderr, "malloc() failed");
 | 
							fprintf(stderr, "malloc() failed");
 | 
				
			||||||
| 
						 | 
					@ -738,8 +738,8 @@ static imagePixel_t *rdPPM(char *fileName) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
mkPpmFile
 | 
					mkPpmFile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
 | 
					gets output from result of rdPPM and writes a new PPM file. Best Case is a
 | 
				
			||||||
carbon copy of the source image. Build for debugging
 | 
					carbon copy of the source image. Build for debugging.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -766,35 +766,30 @@ gets one of the rgb color channels and writes them to a file
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) {
 | 
					int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) {
 | 
				
			||||||
	// int length = (image->x * image->y) / 3;
 | 
					 | 
				
			||||||
	unsigned i = 0;
 | 
						unsigned i = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	printf("colorChannel in Function: %s", colorChannel);
 | 
						printf("colorChannel : %s\n", colorChannel);
 | 
				
			||||||
	if (image) {
 | 
						if ( image ) {											// RGB channel can be set through args from cli 
 | 
				
			||||||
	
 | 
							if ( strcmp(colorChannel, "green") == 0 ){						
 | 
				
			||||||
		if (strcmp(colorChannel, "green") == 0){
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++) {
 | 
									fprintf ( fp, "%d\n", image->data[i].green );
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].green);
 | 
					 | 
				
			||||||
				printf("|");
 | 
					 | 
				
			||||||
			}
 | 
								}
 | 
				
			||||||
		} else if (strcmp(colorChannel, "red") == 0){				
 | 
							} else if ( strcmp(colorChannel, "red") == 0 ){				
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++) {
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].red);
 | 
									fprintf ( fp, "%d\n", image->data[i].red );
 | 
				
			||||||
				printf(".");
 | 
					 | 
				
			||||||
			}	
 | 
								}	
 | 
				
			||||||
			
 | 
								
 | 
				
			||||||
		} else if (strcmp(colorChannel, "blue") == 0 ) {
 | 
							} else if (strcmp(colorChannel, "blue") == 0 ) {
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].blue);
 | 
									fprintf ( fp, "%d\n", image->data[i].blue );	
 | 
				
			||||||
				printf("/");
 | 
					 | 
				
			||||||
			}
 | 
								}
 | 
				
			||||||
		} else { 
 | 
							} else { 
 | 
				
			||||||
			printf("Colorchannels are red, green and blue. Pick one of them!");
 | 
								printf("Colorchannels are red, green and blue. Pick one of them!");
 | 
				
			||||||
			exit(EXIT_FAILURE);
 | 
								exit( EXIT_FAILURE );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp);
 | 
						fclose(fp);
 | 
				
			||||||
	return mlData->samplesCount;
 | 
						return mlData->samplesCount;									// returned for debugging, TODO: void PPmcolorChannel
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
| 
						 | 
					@ -809,13 +804,13 @@ creating the SVG graph
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
					void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
				
			||||||
	int i = 0;
 | 
						int i = 0;
 | 
				
			||||||
	//char  buffer[NUMBER_OF_SAMPLES];
 | 
					 | 
				
			||||||
	char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount);
 | 
						char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	while (!feof(fp)) {
 | 
						while (!feof(fp)) {
 | 
				
			||||||
		if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
 | 
							if (fgets(buffer, mlData->samplesCount, fp) != NULL) {			
 | 
				
			||||||
			sscanf(buffer, "%lf", &xSamples[i]);
 | 
								sscanf(buffer, "%lf", &xSamples[i]);
 | 
				
			||||||
			//printf("%lf\n", xSamples[i] );
 | 
								//printf("%lf\n", xSamples[i] );
 | 
				
			||||||
			points[i].yVal[0] = xSamples[i];
 | 
								points[i].yVal[0] = xSamples[i];				// Fills points so actual input values can be seen as a graph
 | 
				
			||||||
			points[i].xVal[0] = i;
 | 
								points[i].xVal[0] = i;
 | 
				
			||||||
			++i;
 | 
								++i;
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
| 
						 | 
					@ -828,7 +823,7 @@ void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
windowXMean
 | 
					windowXMean
 | 
				
			||||||
 | 
					
 | 
				
			||||||
returns mean value of given input, which has a length of WINDOWSIZE
 | 
					returns mean value of given input 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -836,7 +831,7 @@ double windowXMean(int _arraylength, int xCount) {
 | 
				
			||||||
	double sum = 0.0;
 | 
						double sum = 0.0;
 | 
				
			||||||
	double *ptr;
 | 
						double *ptr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
 | 
						for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { 	// Set ptr to beginning of window
 | 
				
			||||||
        sum += *ptr;
 | 
					        sum += *ptr;
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	return sum / (double)_arraylength;
 | 
						return sum / (double)_arraylength;
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -28,7 +28,7 @@ There are a bunch of options you can predefine but do not have to. The only para
 | 
				
			||||||
| -n	    | Amount of input data used     | 500    |
 | 
					| -n	    | Amount of input data used     | 500    |
 | 
				
			||||||
| -w        | Size of  M (window)      	    | 5      |
 | 
					| -w        | Size of  M (window)      	    | 5      |
 | 
				
			||||||
| -c        | Choose RGB color channel, green has least noise. | green  |
 | 
					| -c        | Choose RGB color channel, green has least noise. | green  |
 | 
				
			||||||
| -l        | Learnrate of machine learning | 0.8    |
 | 
					| -l        | Learnrate of machine learning | 0.4    |
 | 
				
			||||||
| -s        | Seed randomizing weights. Choose for repoducability. | time(NULL)| 
 | 
					| -s        | Seed randomizing weights. Choose for repoducability. | time(NULL)| 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This code is ANSI compatible no POSIX, C99, C11 or GNU libs, because it had to be VS compatible . There are way easier methods like getline() or getopt(), I know ...
 | 
					This code is ANSI compatible no POSIX, C99, C11 or GNU libs, because it had to be VS compatible . There are way easier methods like getline() or getopt(), I know ...
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -80,11 +80,11 @@ int main( int argc, char **argv ) {
 | 
				
			||||||
	unsigned int *seed = NULL;
 | 
						unsigned int *seed = NULL;
 | 
				
			||||||
	unsigned k, xLength;
 | 
						unsigned k, xLength;
 | 
				
			||||||
	unsigned int windowSize = 5;
 | 
						unsigned int windowSize = 5;
 | 
				
			||||||
	unsigned int samplesCount = 501;
 | 
						unsigned int samplesCount = 512;
 | 
				
			||||||
	char *stdcolor = "green";
 | 
						char *stdcolor = "green";
 | 
				
			||||||
	colorChannel = stdcolor;
 | 
						colorChannel = stdcolor;
 | 
				
			||||||
	unsigned int uint_buffer[1];
 | 
						unsigned int uint_buffer[1];
 | 
				
			||||||
	double learnrate = 0.8;
 | 
						double learnrate = 0.4;
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	while( (argc > 1) && (argv[1][0] == '-')  ) {	// Parses parameters from stdin
 | 
						while( (argc > 1) && (argv[1][0] == '-')  ) {	// Parses parameters from stdin
 | 
				
			||||||
| 
						 | 
					@ -132,51 +132,52 @@ int main( int argc, char **argv ) {
 | 
				
			||||||
		++argv;
 | 
							++argv;
 | 
				
			||||||
		--argc;
 | 
							--argc;
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	init_mldata_t(windowSize, samplesCount, learnrate);
 | 
						init_mldata_t ( windowSize, samplesCount, learnrate );
 | 
				
			||||||
	xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount );
 | 
						xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount ); 	// Resize input values
 | 
				
			||||||
	points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount);
 | 
						points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount);		// Resize points
 | 
				
			||||||
	imagePixel_t *image;	
 | 
						imagePixel_t *image;									
 | 
				
			||||||
	char fileName[50];
 | 
						image = rdPPM(inputfile);							// Set Pointer on input values
 | 
				
			||||||
 | 
						
 | 
				
			||||||
	image = rdPPM(inputfile);
 | 
						char fileName[50];								// Logfiles and their names 
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
						mkFileName(fileName, sizeof(fileName), TEST_VALUES);
 | 
				
			||||||
	FILE* fp5 = fopen(fileName, "w");
 | 
						FILE* fp5 = fopen(fileName, "w");
 | 
				
			||||||
	xLength = ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values
 | 
						xLength = ppmColorChannel(fp5, image, colorChannel, mlData); 			// Returns length of ppm input values, debugging
 | 
				
			||||||
	printf("%d\n", xLength);
 | 
					 | 
				
			||||||
	FILE* fp6 = fopen(fileName, "r");
 | 
						FILE* fp6 = fopen(fileName, "r");
 | 
				
			||||||
	colorSamples(fp6, mlData);
 | 
						colorSamples(fp6, mlData);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if ( (seed != NULL) ){ 			
 | 
						if ( (seed != NULL) ){ 			
 | 
				
			||||||
		srand( *seed );					// Seed for random number generating
 | 
							srand( *seed );								// Seed for random number generating
 | 
				
			||||||
		printf("srand is reproducable : %u", seed);
 | 
							printf("srand is reproducable\n", seed);
 | 
				
			||||||
	} else {
 | 
						} else {
 | 
				
			||||||
		srand( (unsigned int)time(NULL) );
 | 
							srand( (unsigned int)time(NULL) );
 | 
				
			||||||
		printf("srand from time\n");			// Default seed is time(NULL)
 | 
							printf("srand depends on time\n");					// Default seed is time(NULL)
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
						printf("generated weights:\n");
 | 
				
			||||||
//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
					//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
				
			||||||
		for (k = 0; k < mlData->windowSize; k++) {
 | 
							for (k = 0; k < mlData->windowSize; k++) {			
 | 
				
			||||||
		mlData->weights[k] = rndm(); 		// Init random weights
 | 
							mlData->weights[k] = rndm(); 						// Init random weights
 | 
				
			||||||
		printf("%lf\n", mlData->weights[k]);
 | 
							printf("%lf\n", mlData->weights[k]);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
//	}
 | 
					//	}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
 | 
						mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);				// Logfile weights
 | 
				
			||||||
	FILE *fp0 = fopen(fileName, "w");
 | 
						FILE *fp0 = fopen(fileName, "w");
 | 
				
			||||||
//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
					//	for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
 | 
				
			||||||
		for (k = 0; k < mlData->windowSize; k++) {
 | 
							for (k = 0; k < mlData->windowSize; k++) {
 | 
				
			||||||
			fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);	// Save generated weights to to file
 | 
								fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);	
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
//	}
 | 
					//	}
 | 
				
			||||||
	fclose(fp0);
 | 
						fclose(fp0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// math magic
 | 
						/* *math magic* */
 | 
				
			||||||
    	localMean ( mlData, points );
 | 
					    	localMean ( mlData, points );
 | 
				
			||||||
	directPredecessor ( mlData, points);
 | 
						directPredecessor ( mlData, points);
 | 
				
			||||||
	differentialPredecessor( mlData, points );
 | 
						differentialPredecessor( mlData, points );
 | 
				
			||||||
	
 | 
						
 | 
				
			||||||
	mkSvgGraph(points);
 | 
						mkSvgGraph(points);								// Graph building
 | 
				
			||||||
	free(xSamples);
 | 
						free(xSamples);
 | 
				
			||||||
	free(points);
 | 
						free(points);
 | 
				
			||||||
 | 
						free(mlData);
 | 
				
			||||||
	printf("\nDONE!\n");
 | 
						printf("\nDONE!\n");
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -190,74 +191,71 @@ Variant (1/3), substract local mean.
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void localMean ( mldata_t *mlData, point_t points[] ) {
 | 
					void localMean ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
//	double (*local_weights)[WINDOWSIZE] =(double (*)[WINDOWSIZE]) malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
 | 
						double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1);		
 | 
				
			||||||
	//memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
 | 
						memcpy ( localWeights, mlData->weights, mlData->windowSize ); 					// Copy weights so they can be changed locally
 | 
				
			||||||
	double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1);
 | 
						
 | 
				
			||||||
	memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) ); // TODO: check size !!!
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	char fileName[50];
 | 
						char fileName[50];
 | 
				
			||||||
	double xError[2048]; // includes e(n)
 | 
						double xError[2048]; 										// Includes e(n)		
 | 
				
			||||||
	memset(xError, 0.0, mlData->samplesCount);// initialize xError-array with Zero
 | 
						memset(xError, 0.0, mlData->samplesCount);							// Initialize xError-array with Zero		
 | 
				
			||||||
	unsigned i, xCount = 0; // runtime var
 | 
						unsigned i, xCount = 0; 									// Runtime vars
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
 | 
						mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);						// Create Logfile and its filename
 | 
				
			||||||
	FILE* fp4 = fopen(fileName, "w");
 | 
						FILE* fp4 = fopen(fileName, "w");								
 | 
				
			||||||
	fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) );
 | 
						fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) );					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double xMean = xSamples[0];
 | 
						double xMean = xSamples[0];
 | 
				
			||||||
	double xSquared = 0.0;
 | 
						double xSquared = 0.0;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted
 | 
						for ( xCount = 1; xCount < mlData->samplesCount; xCount++ ) { 						// First value will not get predicted
 | 
				
			||||||
 | 
							unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount;	// Ensures corect length at start
 | 
				
			||||||
		unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount;
 | 
							xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;					
 | 
				
			||||||
		xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
 | 
					 | 
				
			||||||
		xPredicted = 0.0;
 | 
							xPredicted = 0.0;
 | 
				
			||||||
		xActual = xSamples[xCount];
 | 
							xActual = xSamples[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get predicted value
 | 
							for ( i = 1; i < _arrayLength; i++ ) { 								// Get predicted value
 | 
				
			||||||
			xPredicted += (localWeights[i] * (xSamples[xCount - i] - xMean));
 | 
								xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xMean) );			
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		xPredicted += xMean;
 | 
							xPredicted += xMean;				
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;								// Get error value
 | 
				
			||||||
		xSquared = 0.0;
 | 
							xSquared = 0.0;
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) { //get xSquared
 | 
							for (i = 1; i < _arrayLength; i++) { 								// Get xSquared
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
								xSquared += pow(xSamples[xCount - i] - xMean, 2);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions
 | 
							if ( xSquared == 0.0 ) { 									// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
			xSquared = 1.0;
 | 
								xSquared = 1.0;
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for ( i = 1; i < _arrayLength; i++ ) { //update weights
 | 
							for ( i = 1; i < _arrayLength; i++ ) { 								// Update weights
 | 
				
			||||||
			localWeights[ i + 1 ] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - i] - xMean) / xSquared );
 | 
								localWeights[ i + 1 ] = localWeights[i] + mlData->learnrate * xError[xCount]  		// Substract localMean
 | 
				
			||||||
 | 
									* ( (xSamples[xCount - i] - xMean) / xSquared );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
		fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);	
 | 
							fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);			// Write to logfile
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
		points[xCount].xVal[1] = xCount;
 | 
							points[xCount].xVal[1] = xCount;								// Save points so graph can be build later on
 | 
				
			||||||
		points[xCount].yVal[1] = xPredicted;
 | 
							points[xCount].yVal[1] = xPredicted;	
 | 
				
			||||||
		points[xCount].xVal[4] = xCount;
 | 
							points[xCount].xVal[4] = xCount;
 | 
				
			||||||
		points[xCount].yVal[4] = xError[xCount];
 | 
							points[xCount].yVal[4] = xError[xCount];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 									// delete NAN values from xError[]
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
						double  xErrorLength = *xErrorPtr; 									// Watch popNAN()!
 | 
				
			||||||
  	xErrorPtr[0] = 0.0;
 | 
					  	xErrorPtr[0] = 0.0;
 | 
				
			||||||
//	printf("Xerrorl:%lf", xErrorLength);
 | 
					//	printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;					// Mean 
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
						for (i = 1; i < xErrorLength; i++) {									// Mean square
 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
					 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;										// Deviation
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
	//FILE *fp2 = fopen(fileName, "w");
 | 
						//FILE *fp2 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
 | 
						fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);	// Write to logfile
 | 
				
			||||||
	//fclose(fp2);
 | 
						//fclose(fp2);
 | 
				
			||||||
	free(localWeights);
 | 
						free(localWeights);
 | 
				
			||||||
	fclose(fp4);
 | 
						fclose(fp4);
 | 
				
			||||||
| 
						 | 
					@ -277,14 +275,14 @@ substract direct predecessor
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
					void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
	double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
						double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
				
			||||||
	memcpy ( localWeights, mlData->weights, sizeof(mlData->windowSize) );
 | 
						memcpy ( localWeights, mlData->weights, mlData->windowSize );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	unsigned xCount = 0, i;
 | 
						unsigned xCount = 0, i;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);						// Logfile and name handling
 | 
				
			||||||
	FILE *fp3 = fopen(fileName, "w");
 | 
						FILE *fp3 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) );
 | 
						fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) );
 | 
				
			||||||
	mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS);
 | 
						mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS);
 | 
				
			||||||
| 
						 | 
					@ -305,15 +303,19 @@ void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		double xSquared = 0.0;
 | 
							double xSquared = 0.0;
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); 					// substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							if ( xSquared == 0.0 ) { 											// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
		localWeights[i + 1] = localWeights[i] + mlData->learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
 | 
								xSquared = 1.0;
 | 
				
			||||||
		fprintf( fp9, "%lf\n", localWeights[i] );
 | 
							}
 | 
				
			||||||
 | 
							for ( i = 1; i < _arrayLength; i++ ) {										// Update weights
 | 
				
			||||||
 | 
								localWeights[i + 1] = localWeights[i] + mlData->learnrate * xError[xCount] 				
 | 
				
			||||||
 | 
									* ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);				
 | 
				
			||||||
 | 
								fprintf( fp9, "%lf\n", localWeights[i] );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
		
 | 
							
 | 
				
			||||||
	        fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
 | 
						        fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);					// Write to logfile
 | 
				
			||||||
		points[xCount].xVal[2] = xCount; 		// Fill point_t array for graph building
 | 
							points[xCount].xVal[2] = xCount; 										// Fill point_t array for graph building
 | 
				
			||||||
		points[xCount].yVal[2] = xPredicted;
 | 
							points[xCount].yVal[2] = xPredicted;
 | 
				
			||||||
		points[xCount].xVal[5] = xCount;
 | 
							points[xCount].xVal[5] = xCount;
 | 
				
			||||||
		points[xCount].yVal[5] = xError[xCount];
 | 
							points[xCount].yVal[5] = xError[xCount];
 | 
				
			||||||
| 
						 | 
					@ -322,22 +324,20 @@ void directPredecessor( mldata_t *mlData, point_t points[]) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp9);
 | 
						fclose(fp9);
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 											// delete NAN values from xError[]
 | 
				
			||||||
	//printf("%lf", xErrorPtr[499]);
 | 
						double  xErrorLength = *xErrorPtr; 											// Watch popNAN()!
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
							xErrorPtr[0] = 0.0;												// Stored length in [0] , won't be used anyway. Bit dirty
 | 
				
			||||||
    xErrorPtr[0] = 0.0;
 | 
					 | 
				
			||||||
	//printf("Xerrorl:%lf", xErrorLength);
 | 
						//printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;							// Mean
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;													
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
					 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
						for (i = 1; i < xErrorLength; i++) {
 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);										// Mean square
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;												// Deviation
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
 | 
				
			||||||
 | 
					 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
	//FILE *fp2 = fopen(fileName, "wa");
 | 
						//FILE *fp2 = fopen(fileName, "wa");
 | 
				
			||||||
| 
						 | 
					@ -360,19 +360,19 @@ differential predecessor.
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
					void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
	double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
						double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 );
 | 
				
			||||||
	memcpy( localWeights, mlData->weights, sizeof(mlData->windowSize) );
 | 
						memcpy( localWeights, mlData->weights, mlData->windowSize );
 | 
				
			||||||
	char fileName[512];
 | 
						char fileName[512];
 | 
				
			||||||
	double xError[2048];
 | 
						double xError[2048];
 | 
				
			||||||
	unsigned xCount = 0, i;
 | 
						unsigned xCount = 0, i;
 | 
				
			||||||
	double xPredicted = 0.0;
 | 
						double xPredicted = 0.0;
 | 
				
			||||||
	double xActual = 0.0;
 | 
						double xActual = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// File handling
 | 
					
 | 
				
			||||||
	mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
 | 
						mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);							// File handling
 | 
				
			||||||
	FILE *fp6 = fopen(fileName, "w");
 | 
						FILE *fp6 = fopen(fileName, "w");
 | 
				
			||||||
	fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) );
 | 
						fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (xCount = 1; xCount < mlData->samplesCount; xCount++) { // first value will not get predicted
 | 
							for (xCount = 1; xCount < mlData->samplesCount; xCount++) { 							// First value will not get predicted
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
 | 
							unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
 | 
				
			||||||
		xPredicted = 0.0;
 | 
							xPredicted = 0.0;
 | 
				
			||||||
| 
						 | 
					@ -385,10 +385,13 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
		xError[xCount] = xActual - xPredicted;
 | 
							xError[xCount] = xActual - xPredicted;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		double xSquared = 0.0;
 | 
							double xSquared = 0.0;
 | 
				
			||||||
 | 
					 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
 | 
								xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); 					// Substract direct predecessor
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
 | 
							if ( xSquared == 0.0 ) { 											// Otherwise returns Pred: -1.#IND00 in some occassions
 | 
				
			||||||
 | 
								xSquared = 1.0;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (i = 1; i < _arrayLength; i++) {
 | 
							for (i = 1; i < _arrayLength; i++) {
 | 
				
			||||||
			localWeights[i+1] = localWeights[i] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
								localWeights[i+1] = localWeights[i] + mlData->learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
| 
						 | 
					@ -401,21 +404,20 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
 | 
						double *xErrorPtr = popNAN(xError); 											// delete NAN values from xError[]
 | 
				
			||||||
	//printf("%lf", xErrorPtr[499]);
 | 
						double  xErrorLength = *xErrorPtr; 											// Watch popNAN()!
 | 
				
			||||||
	double  xErrorLength = *xErrorPtr; // Watch popNAN()!
 | 
					 | 
				
			||||||
    	xErrorPtr[0] = 0.0;
 | 
					    	xErrorPtr[0] = 0.0;
 | 
				
			||||||
//	printf("Xerrorl:%lf", xErrorLength);
 | 
					//	printf("Xerrorl:%lf", xErrorLength);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
						double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
 | 
				
			||||||
	double deviation = 0.0;
 | 
						double deviation = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// Mean square
 | 
						
 | 
				
			||||||
	for (i = 1; i < xErrorLength; i++) {
 | 
						for (i = 1; i < xErrorLength; i++) {											// Mean square
 | 
				
			||||||
		deviation += pow(xError[i] - mean, 2);
 | 
							deviation += pow(xError[i] - mean, 2);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	deviation /= xErrorLength;
 | 
						deviation /= xErrorLength;
 | 
				
			||||||
	printf("mean:%lf, devitation:%lf", mean, deviation);
 | 
						printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	// write in file
 | 
						// write in file
 | 
				
			||||||
	//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
						//mkFileName(fileName, sizeof(fileName), RESULTS);
 | 
				
			||||||
| 
						 | 
					@ -433,21 +435,21 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
mkFileName
 | 
					mkFileName
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Writes the current date plus the suffix with index suffixId
 | 
					Writes the current date plus suffix with index suffixId
 | 
				
			||||||
into the given buffer. If the total length is longer than max_len,
 | 
					into the given buffer. If the total length is longer than max_len,
 | 
				
			||||||
only max_len characters will be written.
 | 
					only max_len characters will be written.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
					char *mkFileName(char* buffer, size_t max_len, int suffixId) {
 | 
				
			||||||
	const char * format_str = "%Y-%m-%d_%H_%M_%S";
 | 
						const char * format_str = "%Y-%m-%d_%H_%M_%S";				// Date formatting
 | 
				
			||||||
	size_t date_len;
 | 
						size_t date_len;
 | 
				
			||||||
	const char * suffix = fileSuffix(suffixId);
 | 
						const char * suffix = fileSuffix(suffixId);
 | 
				
			||||||
	time_t now = time(NULL);
 | 
						time_t now = time(NULL);				
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	strftime(buffer, max_len, format_str, localtime(&now));
 | 
						strftime(buffer, max_len, format_str, localtime(&now));			// Get Date
 | 
				
			||||||
	date_len = strlen(buffer);
 | 
						date_len = strlen(buffer);
 | 
				
			||||||
	strncat(buffer, suffix, max_len - date_len);
 | 
						strncat(buffer, suffix, max_len - date_len);				// Concat filename
 | 
				
			||||||
	return buffer;
 | 
						return buffer;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -477,7 +479,7 @@ char * fileSuffix ( int id ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fileHeader
 | 
					fileHeader
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Contains and returns header for logfiles 
 | 
					Contains and returns header from logfiles 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -492,9 +494,9 @@ char * fileHeader ( int id ) {
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
myLogger
 | 
					weightsLogger
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Logs x,y points to svg graph
 | 
					Logs used weights to logfile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -532,22 +534,22 @@ void bufferLogger(char *buffer, point_t points[]) {
 | 
				
			||||||
	unsigned i;
 | 
						unsigned i;
 | 
				
			||||||
	char _buffer[512] = "";
 | 
						char _buffer[512] = "";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { // xActual
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) { 									// xActual
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { // xPredicted from localMean
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) {									// xPredicted from localMean
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i <= mlData->samplesCount - 1; i++) { //xPreddicted from directPredecessor
 | 
						for (i = 0; i <= mlData->samplesCount - 1; i++) { 									//xPredicted from directPredecessor
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
						strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
 | 
				
			||||||
	for (i = 0; i < mlData->samplesCount - 1; i++) { //xPredicted from diff Pred
 | 
						for (i = 0; i < mlData->samplesCount - 1; i++) { 									//xPredicted from diff Pred
 | 
				
			||||||
		sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
 | 
							sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
 | 
				
			||||||
		strcat(buffer, _buffer);
 | 
							strcat(buffer, _buffer);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
| 
						 | 
					@ -578,9 +580,9 @@ double sum_array(double x[], int xlength) {
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
popNanLength
 | 
					popNan
 | 
				
			||||||
 | 
					
 | 
				
			||||||
returns length of new array without NAN values
 | 
					returns new array without NAN values 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -603,10 +605,8 @@ double *popNAN(double *xError) {
 | 
				
			||||||
	counter += 1;
 | 
						counter += 1;
 | 
				
			||||||
	more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
						more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
 | 
				
			||||||
	tmp = more_tmp;
 | 
						tmp = more_tmp;
 | 
				
			||||||
	*tmp = tmpLength; // Length of array has to be stored in tmp[0],
 | 
						*tmp = tmpLength; 								// Length of array is stored inside tmp[0]. tmp[0] is never used anyways
 | 
				
			||||||
				    // Cause length is needed later on in the math functions.
 | 
									    
 | 
				
			||||||
				    // xError counting has to begin with 1 in the other functions !
 | 
					 | 
				
			||||||
	printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
 | 
					 | 
				
			||||||
	return tmp;
 | 
						return tmp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					@ -651,20 +651,20 @@ void mkSvgGraph(point_t points[]) {
 | 
				
			||||||
	FILE *input = fopen("graphResults_template.html", "r");
 | 
						FILE *input = fopen("graphResults_template.html", "r");
 | 
				
			||||||
	FILE *target = fopen("graphResults.html", "w");
 | 
						FILE *target = fopen("graphResults.html", "w");
 | 
				
			||||||
	char line[512];
 | 
						char line[512];
 | 
				
			||||||
	char firstGraph[15] = { "<path d=\"M0 0" };
 | 
						char firstGraph[15] = { "<path d=\"M0 0" };			// Position where points will be written after
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if (input == NULL) {
 | 
						if (input == NULL) {
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	char buffer[131072] = "";
 | 
						char buffer[131072] = "";					// Bit dirty
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	memset(buffer, '\0', sizeof(buffer));
 | 
						memset(buffer, '\0', sizeof(buffer));
 | 
				
			||||||
	while (!feof(input)) {
 | 
						while (!feof(input)) {						// parses file until "firstGraph" has been found 	
 | 
				
			||||||
		fgets(line, 512, input);
 | 
							fgets(line, 512, input);		
 | 
				
			||||||
		strncat(buffer, line, strlen(line));
 | 
							strncat(buffer, line, strlen(line));
 | 
				
			||||||
		if (strstr(line, firstGraph) != NULL) {
 | 
							if (strstr(line, firstGraph) != NULL) {			// Compares line <-> "firstGraph"
 | 
				
			||||||
			bufferLogger(buffer, points);
 | 
								bufferLogger(buffer, points);			// write points
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
| 
						 | 
					@ -708,18 +708,18 @@ static imagePixel_t *rdPPM(char *fileName) {
 | 
				
			||||||
		c = getc(fp);
 | 
							c = getc(fp);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	ungetc(c, fp);
 | 
						ungetc(c, fp);
 | 
				
			||||||
	if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
 | 
						if ( fscanf(fp, "%d %d", &image->x, &image->y) != 2 ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid image size in %s\n", fileName);
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	if (fscanf(fp, "%d", &rgbColor) != 1) {
 | 
						if ( fscanf(fp, "%d", &rgbColor) != 1 ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid rgb component in %s\n", fileName);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	if (rgbColor != RGB_COLOR) {
 | 
						if ( rgbColor != RGB_COLOR ) {
 | 
				
			||||||
		fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
							fprintf(stderr, "Invalid image color range in %s\n", fileName);
 | 
				
			||||||
		exit(EXIT_FAILURE);
 | 
							exit(EXIT_FAILURE);
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	while (fgetc(fp) != '\n');
 | 
						while ( fgetc(fp) != '\n' );
 | 
				
			||||||
	image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
						image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
 | 
				
			||||||
	if (!image) {
 | 
						if (!image) {
 | 
				
			||||||
		fprintf(stderr, "malloc() failed");
 | 
							fprintf(stderr, "malloc() failed");
 | 
				
			||||||
| 
						 | 
					@ -738,8 +738,8 @@ static imagePixel_t *rdPPM(char *fileName) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
mkPpmFile
 | 
					mkPpmFile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
 | 
					gets output from result of rdPPM and writes a new PPM file. Best Case is a
 | 
				
			||||||
carbon copy of the source image. Build for debugging
 | 
					carbon copy of the source image. Build for debugging.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -766,35 +766,30 @@ gets one of the rgb color channels and writes them to a file
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) {
 | 
					int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t *mlData) {
 | 
				
			||||||
	// int length = (image->x * image->y) / 3;
 | 
					 | 
				
			||||||
	unsigned i = 0;
 | 
						unsigned i = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	printf("colorChannel in Function: %s", colorChannel);
 | 
						printf("colorChannel : %s\n", colorChannel);
 | 
				
			||||||
	if (image) {
 | 
						if ( image ) {											// RGB channel can be set through args from cli 
 | 
				
			||||||
	
 | 
							if ( strcmp(colorChannel, "green") == 0 ){						
 | 
				
			||||||
		if (strcmp(colorChannel, "green") == 0){
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++) {
 | 
									fprintf ( fp, "%d\n", image->data[i].green );
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].green);
 | 
					 | 
				
			||||||
				printf("|");
 | 
					 | 
				
			||||||
			}
 | 
								}
 | 
				
			||||||
		} else if (strcmp(colorChannel, "red") == 0){				
 | 
							} else if ( strcmp(colorChannel, "red") == 0 ){				
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++) {
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].red);
 | 
									fprintf ( fp, "%d\n", image->data[i].red );
 | 
				
			||||||
				printf(".");
 | 
					 | 
				
			||||||
			}	
 | 
								}	
 | 
				
			||||||
			
 | 
								
 | 
				
			||||||
		} else if (strcmp(colorChannel, "blue") == 0 ) {
 | 
							} else if (strcmp(colorChannel, "blue") == 0 ) {
 | 
				
			||||||
			for (i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
								for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
 | 
				
			||||||
				fprintf(fp, "%d\n", image->data[i].blue);
 | 
									fprintf ( fp, "%d\n", image->data[i].blue );	
 | 
				
			||||||
				printf("/");
 | 
					 | 
				
			||||||
			}
 | 
								}
 | 
				
			||||||
		} else { 
 | 
							} else { 
 | 
				
			||||||
			printf("Colorchannels are red, green and blue. Pick one of them!");
 | 
								printf("Colorchannels are red, green and blue. Pick one of them!");
 | 
				
			||||||
			exit(EXIT_FAILURE);
 | 
								exit( EXIT_FAILURE );
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	fclose(fp);
 | 
						fclose(fp);
 | 
				
			||||||
	return mlData->samplesCount;
 | 
						return mlData->samplesCount;									// returned for debugging, TODO: void PPmcolorChannel
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
| 
						 | 
					@ -809,13 +804,13 @@ creating the SVG graph
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
					void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
				
			||||||
	int i = 0;
 | 
						int i = 0;
 | 
				
			||||||
	//char  buffer[NUMBER_OF_SAMPLES];
 | 
					 | 
				
			||||||
	char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount);
 | 
						char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	while (!feof(fp)) {
 | 
						while (!feof(fp)) {
 | 
				
			||||||
		if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
 | 
							if (fgets(buffer, mlData->samplesCount, fp) != NULL) {			
 | 
				
			||||||
			sscanf(buffer, "%lf", &xSamples[i]);
 | 
								sscanf(buffer, "%lf", &xSamples[i]);
 | 
				
			||||||
			//printf("%lf\n", xSamples[i] );
 | 
								//printf("%lf\n", xSamples[i] );
 | 
				
			||||||
			points[i].yVal[0] = xSamples[i];
 | 
								points[i].yVal[0] = xSamples[i];				// Fills points so actual input values can be seen as a graph
 | 
				
			||||||
			points[i].xVal[0] = i;
 | 
								points[i].xVal[0] = i;
 | 
				
			||||||
			++i;
 | 
								++i;
 | 
				
			||||||
		}
 | 
							}
 | 
				
			||||||
| 
						 | 
					@ -828,7 +823,7 @@ void colorSamples ( FILE* fp, mldata_t *mlData ) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
windowXMean
 | 
					windowXMean
 | 
				
			||||||
 | 
					
 | 
				
			||||||
returns mean value of given input, which has a length of WINDOWSIZE
 | 
					returns mean value of given input 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
======================================================================================================
 | 
					======================================================================================================
 | 
				
			||||||
*/
 | 
					*/
 | 
				
			||||||
| 
						 | 
					@ -836,7 +831,7 @@ double windowXMean(int _arraylength, int xCount) {
 | 
				
			||||||
	double sum = 0.0;
 | 
						double sum = 0.0;
 | 
				
			||||||
	double *ptr;
 | 
						double *ptr;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
 | 
						for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { 	// Set ptr to beginning of window
 | 
				
			||||||
        sum += *ptr;
 | 
					        sum += *ptr;
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	return sum / (double)_arraylength;
 | 
						return sum / (double)_arraylength;
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -27,6 +27,6 @@ There are a bunch of options you can predefine but do not have to. The only para
 | 
				
			||||||
| -n	    | Amount of input data used     | 500    |
 | 
					| -n	    | Amount of input data used     | 500    |
 | 
				
			||||||
| -w        | Size of  M (window)      	    | 5      |
 | 
					| -w        | Size of  M (window)      	    | 5      |
 | 
				
			||||||
| -c        | Choose RGB color channel, green has least noise. | green  |
 | 
					| -c        | Choose RGB color channel, green has least noise. | green  |
 | 
				
			||||||
| -l        | Learnrate of machine learning | 0.8    |
 | 
					| -l        | Learnrate of machine learning | 0.4    |
 | 
				
			||||||
| -s        | Seed randomizing weights. Choose for repoducability. | time(NULL)| 
 | 
					| -s        | Seed randomizing weights. Choose for repoducability. | time(NULL)| 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue