removed free(localWeights), changed help function from -x to -g true for graphing
This commit is contained in:
parent
9955d5871b
commit
70cb5e399b
|
@ -265,7 +265,7 @@ void localMean ( mldata_t *mlData, point_t points[] ) {
|
|||
deviation /= xErrorLength; // Deviation
|
||||
printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
|
||||
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile
|
||||
free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
|
||||
|
@ -353,7 +353,7 @@ void directPredecessor( mldata_t *mlData, point_t points[]) {
|
|||
printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
|
||||
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||
fclose(fp3);
|
||||
free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
}
|
||||
|
@ -438,7 +438,7 @@ void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
|
|||
printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
|
||||
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||
fclose(fp6);
|
||||
free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
|
||||
|
@ -884,7 +884,7 @@ void usage ( char **argv ) {
|
|||
printf("\t-c <color>\t\tUse this color channel from inputfile.\n");
|
||||
printf("\t-w <digit>\t\tCount of used weights (windowSize).\n");
|
||||
printf("\t-l <digit>\t\tLearnrate, 0 < learnrate < 1.\n");
|
||||
printf("\t-x true\t\t\tLogfiles only, no graph building.\n\t\t\t\tChoose for intense amount of input data.\n");
|
||||
printf("\t-g true\t\t\tGraph building.\n\t\t\t\tChoose for n < 1200.\n");
|
||||
printf("\t-s <digit>\t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n");
|
||||
printf("\n\n");
|
||||
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -x true\n", &argv[0][0], &argv[0][0]);
|
||||
|
|
|
@ -23,45 +23,45 @@ double *xSamples; // Input values
|
|||
mldata_t *mlData = NULL; // Machine learning
|
||||
point_t *points = NULL; // Graphing
|
||||
|
||||
/* *graph building* */
|
||||
/* *graph building* */
|
||||
static imagePixel_t * rdPPM(char *fileName); // Read PPM file format
|
||||
void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file
|
||||
int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file
|
||||
char *colorChannel, mldata_t *mlData);
|
||||
void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples
|
||||
|
||||
/* *file handling* */
|
||||
char * mkFileName(char* buffer,
|
||||
size_t max_len, int suffixId);
|
||||
char *fileSuffix(int id);
|
||||
char *fileHeader(int id); // Header inside the logfiles
|
||||
//void myLogger ( FILE* fp, point_t points[] );
|
||||
/* *file handling* */
|
||||
char * mkFileName ( char* buffer,
|
||||
size_t max_len, int suffixId );
|
||||
char *fileSuffix ( int id );
|
||||
char *fileHeader ( int id ); // Header inside the logfiles
|
||||
//void myLogger ( FILE* fp, point_t points[] );
|
||||
void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template
|
||||
void mkSvgGraph(point_t points[]); // Parses graph template and calls bufferLogger()
|
||||
void weightsLogger(double *weights, int suffix); // Writes updated weights to a file
|
||||
void mkSvgGraph ( point_t points[] ); // Parses graph template and calls bufferLogger()
|
||||
void weightsLogger ( double *weights, int suffix ); // Writes updated weights to a file
|
||||
|
||||
/* *rand seed* */
|
||||
double r2(void); // Random val between 0 and 1
|
||||
double rndm(void);
|
||||
/* *rand seed* */
|
||||
double r2 ( void ); // Random val between 0 and 1
|
||||
double rndm ( void );
|
||||
|
||||
/* *args parser* */
|
||||
void usage(char **argv); // Help text called by args parser
|
||||
void usage ( char **argv ); // Help text called by args parser
|
||||
|
||||
/* *math* */
|
||||
/* *math* */
|
||||
mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate);
|
||||
double sum_array(double x[], int length);
|
||||
|
||||
void localMean(mldata_t *mlData, point_t points[]); // First,
|
||||
void directPredecessor(mldata_t *mlData, point_t points[]); // Second,
|
||||
void differentialPredecessor(mldata_t *mlData, point_t points[]); // Third filter implementation
|
||||
void localMean ( mldata_t *mlData,point_t points[] ); // First,
|
||||
void directPredecessor ( mldata_t *mlData, point_t points[] ); // Second,
|
||||
void differentialPredecessor ( mldata_t *mlData, point_t points[] ); // Third filter implementation
|
||||
|
||||
double *popNAN(double *xError); // Returns array without NAN values, if any exist
|
||||
double windowXMean(int _arraylength, int xCount); // Returns mean value of given window
|
||||
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
char *colorChannel = (char *)malloc(sizeof(char) * 32);
|
||||
int main( int argc, char **argv ) {
|
||||
char *colorChannel = (char *) malloc(sizeof(char)* 32);
|
||||
char *inputfile = (char *)malloc(sizeof(char) * 32);
|
||||
unsigned *seed = NULL;
|
||||
unsigned k, include = 0;
|
||||
|
@ -74,8 +74,8 @@ int main(int argc, char **argv) {
|
|||
char *istrue = "true";
|
||||
|
||||
|
||||
while ((argc > 1) && (argv[1][0] == '-')) { // Parses parameters from stdin
|
||||
switch (argv[1][1]) {
|
||||
while( (argc > 1) && (argv[1][0] == '-') ) { // Parses parameters from stdin
|
||||
switch( argv[1][1] ) {
|
||||
case 'i':
|
||||
inputfile = &argv[1][3];
|
||||
++argv;
|
||||
|
@ -114,11 +114,10 @@ int main(int argc, char **argv) {
|
|||
break;
|
||||
case 'g':
|
||||
sscanf(&argv[1][3], "%s", xBuffer);
|
||||
if (strstr(xBuffer, istrue)) {
|
||||
if ( strstr(xBuffer, istrue) ) {
|
||||
include = 1;
|
||||
}
|
||||
else {
|
||||
printf("Wrong Argruments: %s\n", argv[1]);
|
||||
} else {
|
||||
printf( "Wrong Argruments: %s\n", argv[1]);
|
||||
usage(argv);
|
||||
}
|
||||
++argv;
|
||||
|
@ -133,9 +132,9 @@ int main(int argc, char **argv) {
|
|||
--argc;
|
||||
}
|
||||
|
||||
init_mldata_t(windowSize, samplesCount, learnrate);
|
||||
xSamples = (double *)malloc(sizeof(double) * mlData->samplesCount); // Resize input values
|
||||
points = (point_t *)malloc(sizeof(point_t) * mlData->samplesCount); // Resize points
|
||||
init_mldata_t ( windowSize, samplesCount, learnrate );
|
||||
xSamples = (double *) malloc ( sizeof(double) * mlData->samplesCount ); // Resize input values
|
||||
points = (point_t *) malloc ( sizeof(point_t) * mlData->samplesCount); // Resize points
|
||||
imagePixel_t *image;
|
||||
image = rdPPM(inputfile); // Set Pointer on input values
|
||||
|
||||
|
@ -148,12 +147,11 @@ int main(int argc, char **argv) {
|
|||
FILE* fp6 = fopen(fileName, "r");
|
||||
colorSamples(fp6, mlData);
|
||||
|
||||
if ((seed != NULL)) {
|
||||
srand(*seed); // Seed for random number generating
|
||||
if ( (seed != NULL) ){
|
||||
srand( *seed ); // Seed for random number generating
|
||||
printf("srand is reproducable\n");
|
||||
}
|
||||
else {
|
||||
srand((unsigned int)time(NULL));
|
||||
} else {
|
||||
srand( (unsigned int)time(NULL) );
|
||||
printf("srand depends on time\n"); // Default seed is time(NULL)
|
||||
}
|
||||
printf("generated weights:\n");
|
||||
|
@ -173,11 +171,11 @@ int main(int argc, char **argv) {
|
|||
fclose(fp0);
|
||||
|
||||
/* *math magic* */
|
||||
localMean(mlData, points);
|
||||
directPredecessor(mlData, points);
|
||||
differentialPredecessor(mlData, points);
|
||||
localMean ( mlData, points );
|
||||
directPredecessor ( mlData, points);
|
||||
differentialPredecessor( mlData, points );
|
||||
|
||||
if (include == 1) {
|
||||
if ( include == 1 ) {
|
||||
mkSvgGraph(points); // Graph building
|
||||
|
||||
}
|
||||
|
@ -198,20 +196,20 @@ Variant (1/3), substract local mean.
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void localMean(mldata_t *mlData, point_t points[]) {
|
||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||
void localMean ( mldata_t *mlData, point_t points[] ) {
|
||||
double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1);
|
||||
localWeights = mlData->weights;
|
||||
|
||||
char fileName[50];
|
||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||
double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||
memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero
|
||||
unsigned i, xCount = 0; // Runtime vars
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename
|
||||
FILE* fp4 = fopen(fileName, "w");
|
||||
fprintf(fp4, fileHeader(LOCAL_MEAN_HEADER));
|
||||
fprintf( fp4, fileHeader(LOCAL_MEAN_HEADER) );
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_LOCAL_MEAN);
|
||||
mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_LOCAL_MEAN);
|
||||
FILE *fp9 = fopen(fileName, "w");
|
||||
|
||||
|
||||
|
@ -220,14 +218,14 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
|||
double xPredicted = 0.0;
|
||||
double xActual = 0.0;
|
||||
|
||||
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // First value will not get predicted
|
||||
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start
|
||||
for ( xCount = 1; xCount < mlData->samplesCount-1; xCount++ ) { // First value will not get predicted
|
||||
unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start
|
||||
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) { // Get predicted value
|
||||
xPredicted += (localWeights[i - 1] * (xSamples[xCount - i] - xMean));
|
||||
for ( i = 1; i < _arrayLength; i++ ) { // Get predicted value
|
||||
xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xMean) );
|
||||
}
|
||||
xPredicted += xMean;
|
||||
xError[xCount] = xActual - xPredicted; // Get error value
|
||||
|
@ -235,13 +233,13 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
|||
for (i = 1; i < _arrayLength; i++) { // Get xSquared
|
||||
xSquared += pow(xSamples[xCount - i] - xMean, 2);
|
||||
}
|
||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
xSquared = 1.0;
|
||||
}
|
||||
for (i = 1; i < _arrayLength; i++) { // Update weights
|
||||
for ( i = 1; i < _arrayLength; i++ ) { // Update weights
|
||||
localWeights[i] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean
|
||||
* ((xSamples[xCount - i] - xMean) / xSquared);
|
||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
||||
* ( (xSamples[xCount - i] - xMean) / xSquared );
|
||||
fprintf( fp9, "%lf\n", localWeights[i] );
|
||||
}
|
||||
|
||||
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||
|
@ -257,7 +255,7 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
|||
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
|
||||
double xErrorLength = *xErrorPtr; // Watch popNAN()!
|
||||
xErrorPtr[0] = 0.0;
|
||||
// printf("Xerrorl:%lf", xErrorLength);
|
||||
// printf("Xerrorl:%lf", xErrorLength);
|
||||
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean
|
||||
double deviation = 0.0;
|
||||
|
||||
|
@ -267,7 +265,7 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
|||
deviation /= xErrorLength; // Deviation
|
||||
printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
|
||||
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile
|
||||
//free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
|
||||
|
@ -286,12 +284,12 @@ substract direct predecessor
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void directPredecessor(mldata_t *mlData, point_t points[]) {
|
||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||
void directPredecessor( mldata_t *mlData, point_t points[]) {
|
||||
double *localWeights = ( double * ) malloc ( sizeof(double) * mlData->windowSize + 1 );
|
||||
localWeights = mlData->weights;
|
||||
|
||||
char fileName[512];
|
||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
|
||||
double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1 );
|
||||
memset(xError, 0.0, mlData->samplesCount);
|
||||
unsigned xCount = 0, i;
|
||||
double xActual = 0.0;
|
||||
|
@ -299,18 +297,18 @@ void directPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
|
||||
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling
|
||||
FILE *fp3 = fopen(fileName, "w");
|
||||
fprintf(fp3, fileHeader(DIRECT_PREDECESSOR_HEADER));
|
||||
fprintf( fp3, fileHeader(DIRECT_PREDECESSOR_HEADER) );
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED);
|
||||
mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED);
|
||||
FILE *fp9 = fopen(fileName, "w");
|
||||
|
||||
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // first value will not get predicted
|
||||
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
|
||||
for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // first value will not get predicted
|
||||
unsigned _arrayLength = ( xCount > mlData->windowSize ) ? mlData->windowSize + 1 : xCount;
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (localWeights[i - 1] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
||||
xPredicted += ( localWeights[i - 1] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
|
@ -320,13 +318,13 @@ void directPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
for (i = 1; i < _arrayLength; i++) {
|
||||
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
|
||||
}
|
||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
xSquared = 1.0;
|
||||
}
|
||||
for (i = 1; i < _arrayLength; i++) { // Update weights
|
||||
localWeights[i] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
||||
* ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
||||
for ( i = 1; i < _arrayLength; i++ ) { // Update weights
|
||||
localWeights[i] = localWeights[i-1] + mlData->learnrate * xError[xCount]
|
||||
* ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||
fprintf( fp9, "%lf\n", localWeights[i] );
|
||||
}
|
||||
|
||||
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||
|
@ -355,7 +353,7 @@ void directPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
|
||||
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||
fclose(fp3);
|
||||
//free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
}
|
||||
|
@ -370,12 +368,12 @@ differential predecessor.
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||
void differentialPredecessor ( mldata_t *mlData, point_t points[] ) {
|
||||
double *localWeights = (double *) malloc ( sizeof(double) * mlData->windowSize + 1 );
|
||||
localWeights = mlData->weights;
|
||||
|
||||
char fileName[512];
|
||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
|
||||
double *xError = (double *) malloc ( sizeof(double) * mlData->samplesCount + 1);
|
||||
memset(xError, 0.0, mlData->samplesCount);
|
||||
|
||||
unsigned xCount = 0, i;
|
||||
|
@ -384,19 +382,19 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
|
||||
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR); // File handling
|
||||
FILE *fp6 = fopen(fileName, "w");
|
||||
fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER));
|
||||
fprintf(fp6, fileHeader(DIFFERENTIAL_PREDECESSOR_HEADER) );
|
||||
|
||||
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_DIFF_PRED);
|
||||
mkFileName ( fileName, sizeof(fileName), USED_WEIGHTS_DIFF_PRED);
|
||||
FILE *fp9 = fopen(fileName, "w");
|
||||
|
||||
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // First value will not get predicted
|
||||
for (xCount = 1; xCount < mlData->samplesCount-1; xCount++) { // First value will not get predicted
|
||||
|
||||
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
|
||||
xPredicted = 0.0;
|
||||
xActual = xSamples[xCount];
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
xPredicted += (localWeights[i - 1] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
||||
xPredicted += ( localWeights[i - 1] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
|
||||
}
|
||||
xPredicted += xSamples[xCount - 1];
|
||||
xError[xCount] = xActual - xPredicted;
|
||||
|
@ -405,14 +403,14 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
for (i = 1; i < _arrayLength; i++) {
|
||||
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // Substract direct predecessor
|
||||
}
|
||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
if ( xSquared == 0.0 ) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||
xSquared = 1.0;
|
||||
}
|
||||
|
||||
for (i = 1; i < _arrayLength; i++) {
|
||||
localWeights[i] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
||||
localWeights[i] = localWeights[i-1] + mlData->learnrate * xError[xCount]
|
||||
* ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
||||
fprintf( fp9, "%lf\n", localWeights[i] );
|
||||
|
||||
}
|
||||
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||
|
@ -427,7 +425,7 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
|
||||
double xErrorLength = *xErrorPtr; // Watch popNAN()!
|
||||
xErrorPtr[0] = 0.0;
|
||||
// printf("Xerrorl:%lf", xErrorLength);
|
||||
// printf("Xerrorl:%lf", xErrorLength);
|
||||
|
||||
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
|
||||
double deviation = 0.0;
|
||||
|
@ -440,12 +438,12 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
|||
printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
|
||||
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||
fclose(fp6);
|
||||
//free(localWeights);
|
||||
// free(localWeights);
|
||||
free(xErrorPtr);
|
||||
free(xError);
|
||||
|
||||
|
||||
// weightsLogger( localWeights, USED_WEIGHTS );
|
||||
// weightsLogger( localWeights, USED_WEIGHTS );
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -480,7 +478,7 @@ Contains and returns every suffix for all existing filenames
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
char * fileSuffix(int id) {
|
||||
char * fileSuffix ( int id ) {
|
||||
char * suffix[] = { "_weights_pure.txt",
|
||||
"_weights_used_dir_pred_.txt",
|
||||
"_direct_predecessor.txt",
|
||||
|
@ -503,7 +501,7 @@ Contains and returns header from logfiles
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
char * fileHeader(int id) {
|
||||
char * fileHeader ( int id ) {
|
||||
char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
||||
"\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
||||
"\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n"
|
||||
|
@ -520,7 +518,7 @@ Logs used weights to logfile
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void weightsLogger(double *weights, int val) {
|
||||
void weightsLogger (double *weights, int val ) {
|
||||
char fileName[512];
|
||||
unsigned i;
|
||||
mkFileName(fileName, sizeof(fileName), val);
|
||||
|
@ -537,20 +535,20 @@ void weightsLogger(double *weights, int val) {
|
|||
bufferLogger
|
||||
|
||||
formats output of mkSvgGraph -- Please open graphResults.html to see the output--
|
||||
[0] = xActual,
|
||||
[1] = xPredicted from localMean,
|
||||
[2] = xPredicted from directPredecessor,
|
||||
[3] = xPredicted from differentialpredecessor,
|
||||
[4] = xError from localMean,
|
||||
[5] = xError from directPredecessor,
|
||||
[6] = xError from differentialPredecessor
|
||||
[0] = xActual,
|
||||
[1] = xPredicted from localMean,
|
||||
[2] = xPredicted from directPredecessor,
|
||||
[3] = xPredicted from differentialpredecessor,
|
||||
[4] = xError from localMean,
|
||||
[5] = xError from directPredecessor,
|
||||
[6] = xError from differentialPredecessor
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
void bufferLogger(char *buffer, point_t points[]) {
|
||||
unsigned i;
|
||||
char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen
|
||||
// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1);
|
||||
// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1);
|
||||
for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual
|
||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
|
||||
strcat(buffer, _buffer);
|
||||
|
@ -609,10 +607,10 @@ double *popNAN(double *xError) {
|
|||
double *tmp = NULL;
|
||||
double *more_tmp = NULL;
|
||||
|
||||
for (i = 0; i < mlData->samplesCount - 1; i++) {
|
||||
counter++;
|
||||
more_tmp = (double *)realloc(tmp, counter*(sizeof(double)));
|
||||
if (!isnan(xError[i])) {
|
||||
for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
|
||||
counter ++;
|
||||
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
|
||||
if ( !isnan(xError[i]) ) {
|
||||
tmp = more_tmp;
|
||||
tmp[counter - 1] = xError[i];
|
||||
//printf("xERROR:%lf\n", tmp[counter - 1]);
|
||||
|
@ -620,7 +618,7 @@ double *popNAN(double *xError) {
|
|||
}
|
||||
}
|
||||
counter += 1;
|
||||
more_tmp = (double *)realloc(tmp, counter * sizeof(double));
|
||||
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
|
||||
tmp = more_tmp;
|
||||
*tmp = tmpLength; // Length of array is stored inside tmp[0]. tmp[0] is never used anyways
|
||||
|
||||
|
@ -681,7 +679,7 @@ void mkSvgGraph(point_t points[]) {
|
|||
|
||||
|
||||
char buffer[131072] = ""; // Bit dirty
|
||||
// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) );
|
||||
// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) );
|
||||
|
||||
memset(buffer, '\0', sizeof(buffer));
|
||||
while (!feof(input)) { // parses file until "firstGraph" has been found
|
||||
|
@ -733,30 +731,30 @@ static imagePixel_t *rdPPM(char *fileName) {
|
|||
c = getc(fp);
|
||||
}
|
||||
ungetc(c, fp);
|
||||
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
|
||||
if ( fscanf(fp, "%d %d", &image->x, &image->y) != 2 ) {
|
||||
fprintf(stderr, "Invalid image size in %s\n", fileName);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (fscanf(fp, "%d", &rgbColor) != 1) {
|
||||
if ( fscanf(fp, "%d", &rgbColor) != 1 ) {
|
||||
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
|
||||
}
|
||||
if (rgbColor != RGB_COLOR) {
|
||||
if ( rgbColor != RGB_COLOR ) {
|
||||
fprintf(stderr, "Invalid image color range in %s\n", fileName);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
while (fgetc(fp) != '\n');
|
||||
while ( fgetc(fp) != '\n' );
|
||||
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
|
||||
if (!image) {
|
||||
fprintf(stderr, "malloc() on image->data failed");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ((image->x * image->y) < mlData->samplesCount) {
|
||||
printf("Changing \"-n\" to %d, image max data size\n", (image->x * image->y));
|
||||
tmp = (double *)realloc(xSamples, sizeof(double) * (image->x * image->y));
|
||||
if ( (image->x * image->y) < mlData->samplesCount) {
|
||||
printf("Changing \"-n\" to %d, image max data size\n", ( image->x * image->y ) );
|
||||
tmp = (double *) realloc ( xSamples, sizeof(double) * (image->x * image->y) );
|
||||
xSamples = tmp;
|
||||
mlData->samplesCount = (image->x * image->y) / sizeof(double);
|
||||
mlData->samplesCount = (image->x * image->y ) / sizeof(double);
|
||||
}
|
||||
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
|
||||
if ( fread( image->data, 3 * image->x, image->y, fp) != image->y) {
|
||||
fprintf(stderr, "Loading image failed");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
@ -800,26 +798,23 @@ int ppmColorChannel(FILE* fp, imagePixel_t *image, char *colorChannel, mldata_t
|
|||
unsigned i = 0;
|
||||
|
||||
printf("colorChannel : %s\n", colorChannel);
|
||||
if (image) { // RGB channel can be set through args from cli
|
||||
if (strcmp(colorChannel, "green") == 0) {
|
||||
for (i = 0; i < mlData->samplesCount - 1; i++) {
|
||||
fprintf(fp, "%d\n", image->data[i].green);
|
||||
if ( image ) { // RGB channel can be set through args from cli
|
||||
if ( strcmp(colorChannel, "green") == 0 ){
|
||||
for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
|
||||
fprintf ( fp, "%d\n", image->data[i].green );
|
||||
}
|
||||
}
|
||||
else if (strcmp(colorChannel, "red") == 0) {
|
||||
for (i = 0; i < mlData->samplesCount - 1; i++) {
|
||||
fprintf(fp, "%d\n", image->data[i].red);
|
||||
} else if ( strcmp(colorChannel, "red") == 0 ){
|
||||
for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
|
||||
fprintf ( fp, "%d\n", image->data[i].red );
|
||||
}
|
||||
|
||||
} else if ( strcmp(colorChannel, "blue") == 0 ) {
|
||||
for ( i = 0; i < mlData->samplesCount - 1; i++ ) {
|
||||
fprintf ( fp, "%d\n", image->data[i].blue );
|
||||
}
|
||||
else if (strcmp(colorChannel, "blue") == 0) {
|
||||
for (i = 0; i < mlData->samplesCount - 1; i++) {
|
||||
fprintf(fp, "%d\n", image->data[i].blue);
|
||||
}
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
printf("Colorchannels are red, green and blue. Pick one of them!");
|
||||
exit(EXIT_FAILURE);
|
||||
exit( EXIT_FAILURE );
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
|
@ -836,9 +831,9 @@ creating the SVG graph
|
|||
|
||||
======================================================================================================
|
||||
*/
|
||||
void colorSamples(FILE* fp, mldata_t *mlData) {
|
||||
void colorSamples ( FILE* fp, mldata_t *mlData ) {
|
||||
int i = 0;
|
||||
char *buffer = (char *)malloc(sizeof(char) * mlData->samplesCount + 1);
|
||||
char *buffer = (char *) malloc(sizeof(char) * mlData->samplesCount + 1);
|
||||
|
||||
while (!feof(fp)) {
|
||||
if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
|
||||
|
@ -874,13 +869,13 @@ double windowXMean(int _arraylength, int xCount) {
|
|||
/*
|
||||
======================================================================================================
|
||||
|
||||
usage
|
||||
usage
|
||||
|
||||
used in conjunction with the args parser. Returns help section of "-h"
|
||||
used in conjunction with the args parser. Returns help section of "-h"
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
void usage(char **argv) {
|
||||
void usage ( char **argv ) {
|
||||
printf("Usage: %s [POSIX style options] -i file ...\n", &argv[0][0]);
|
||||
printf("POSIX options:\n");
|
||||
printf("\t-h\t\t\tDisplay this information.\n");
|
||||
|
@ -889,7 +884,7 @@ void usage(char **argv) {
|
|||
printf("\t-c <color>\t\tUse this color channel from inputfile.\n");
|
||||
printf("\t-w <digit>\t\tCount of used weights (windowSize).\n");
|
||||
printf("\t-l <digit>\t\tLearnrate, 0 < learnrate < 1.\n");
|
||||
printf("\t-x true\t\t\tLogfiles only, no graph building.\n\t\t\t\tChoose for intense amount of input data.\n");
|
||||
printf("\t-g true\t\t\tGraph building.\n\t\t\t\tChoose for n < 1200.\n");
|
||||
printf("\t-s <digit>\t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n");
|
||||
printf("\n\n");
|
||||
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -x true\n", &argv[0][0], &argv[0][0]);
|
||||
|
@ -899,18 +894,18 @@ void usage(char **argv) {
|
|||
/*
|
||||
======================================================================================================
|
||||
|
||||
init_mldata_t
|
||||
init_mldata_t
|
||||
|
||||
|
||||
Contains meachine learning data
|
||||
Contains meachine learning data
|
||||
|
||||
======================================================================================================
|
||||
*/
|
||||
mldata_t * init_mldata_t(unsigned windowSize, unsigned samplesCount, double learnrate) {
|
||||
mlData = (mldata_t *)malloc(sizeof(mldata_t));
|
||||
mlData = (mldata_t *) malloc( sizeof(mldata_t) );
|
||||
mlData->windowSize = windowSize;
|
||||
mlData->samplesCount = samplesCount;
|
||||
mlData->learnrate = learnrate;
|
||||
mlData->weights = (double *)malloc(sizeof(double) * windowSize + 1);
|
||||
mlData->weights = (double *) malloc ( sizeof(double) * windowSize + 1 );
|
||||
return mlData;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue