Update README.md

This commit is contained in:
Luke 2018-04-03 10:37:29 +02:00 committed by GitHub
parent 8cefcc7bb9
commit c3bbc333a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 7 additions and 3 deletions

View File

@ -17,15 +17,16 @@ Filter mit einer vergleichsweisen geringen Komplexität. Im Wesentlichen werden
Signalwerte gewichtet überlagert, um einen Schätzwert für die aktuelle Position zu generieren.
Xˉ [𝑛] = <20>𝑎𝑗[𝑛] ∙ 𝑥[𝑛 𝑗]
𝑀
𝑗=1
Der Prädiktionsfehler lautet: e[𝑛] = 𝑥[𝑛] 𝑥<>[𝑛]. Um die Prädiktionsfehlerenergie zu minimieren
Der Prädiktionsfehler lautet: e[𝑛] = 𝑥[𝑛] 𝑥'[𝑛]. Um die Prädiktionsfehlerenergie zu minimieren
müssen die Filterkoeffizienten nachgeführt (aktualisiert) werden
𝑎𝑗[𝑛 + 1] = 𝑎𝑗[𝑛] + 𝜇 ∙ 𝑒[𝑛] ∙ 𝑥[𝑛𝑗]
||𝐱[𝑛]||
2 mit ||𝐱[𝑛]||
2 = ∑ (𝑥[𝑛 𝑗]) 𝑀 2
𝑗=1
während 0 < 𝜇 1 die Lernrate ist.
Leider funktioniert das nur gut, wenn der Mittelwert von x[n] gleich Null ist. Für Bilder und auch
teilweise für Sprachsignale ist das nicht gegeben. Als Lösung kommen drei Varianten in Frage,
@ -71,13 +72,16 @@ und
2 mit ||𝐱[𝑛]||
2 = ∑ (𝑥[𝑛 𝑗] 𝑥[𝑛 𝑗 1]) 𝑀 2
𝑗=1
Das originale Verfahren und die drei Varianten sind zu implementieren und mit verschiedenen
Testsignalen (synthetisierte und reale, N>= 500) und verschiedene M zu prüfen. Als Gütekriterium
ist die mittlere Energie des Schätzfehlers 𝐸 = 1
𝑁
<EFBFBD> ∑ (𝑒[𝑛]) 𝑁 2 𝑛=1 heranzuziehen. Bei selbstgenerierten
Signalen könnte auch die Konvergenz der Filterkoeffizienten zu den richtigen Werten
untersucht werden.
Weitere Unterstützung wird bei Bedarf gegeben. Alle Untersuchungen sind schriftlich zu dokumentieren.
Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testsignale)
und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.