updated cpp src file
This commit is contained in:
parent
ee25151afa
commit
e0b4a8006a
|
@ -19,25 +19,24 @@ Created by Stefan Friese on 26.04.2018
|
||||||
typedef SSIZE_T ssize_t;
|
typedef SSIZE_T ssize_t;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
double *xSamples; // Input values
|
double *xSamples; // Input color values from PPM
|
||||||
mldata_t *mlData = NULL; // Machine learning
|
mldata_t *mlData = NULL; // Machine learning realted data
|
||||||
point_t *points = NULL; // Graphing
|
point_t *points = NULL; // Graphing
|
||||||
|
|
||||||
/* *graph building* */
|
/* *Graph building* */
|
||||||
static imagePixel_t * rdPPM(char *fileName); // Read PPM file format
|
static imagePixel_t * rdPPM(char *fileName); // Read PPM file format
|
||||||
void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file
|
void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file
|
||||||
int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file
|
int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file
|
||||||
char *colorChannel, mldata_t *mlData);
|
char *colorChannel, mldata_t *mlData);
|
||||||
void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples
|
void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples
|
||||||
|
|
||||||
/* *file handling* */
|
/* *File handling* */
|
||||||
char * mkFileName(char* buffer,
|
char * mkFileName(char* buffer, // Date+suffix as filename
|
||||||
size_t max_len, int suffixId);
|
size_t max_len, int suffixId);
|
||||||
char *fileSuffix(int id);
|
char *fileSuffix(int id); // Filename ending of logs
|
||||||
char *fileHeader(int id); // Header inside the logfiles
|
char *fileHeader(int id); // Header inside the logfiles
|
||||||
//void myLogger ( FILE* fp, point_t points[] );
|
|
||||||
void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template
|
void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template
|
||||||
void mkSvgGraph(point_t points[]); // Parses graph template and calls bufferLogger()
|
void mkSvgGraph(point_t points[], char *templatePath); // Parses graph template and calls bufferLogger()
|
||||||
void weightsLogger(double *weights, int suffix); // Writes updated weights to a file
|
void weightsLogger(double *weights, int suffix); // Writes updated weights to a file
|
||||||
|
|
||||||
/* *rand seed* */
|
/* *rand seed* */
|
||||||
|
@ -54,12 +53,11 @@ double sum_array(double x[], int length);
|
||||||
void localMean(mldata_t *mlData, point_t points[]); // First,
|
void localMean(mldata_t *mlData, point_t points[]); // First,
|
||||||
void directPredecessor(mldata_t *mlData, point_t points[]); // Second,
|
void directPredecessor(mldata_t *mlData, point_t points[]); // Second,
|
||||||
void differentialPredecessor(mldata_t *mlData, point_t points[]); // Third filter implementation
|
void differentialPredecessor(mldata_t *mlData, point_t points[]); // Third filter implementation
|
||||||
|
void standardNLMS(mldata_t *mlData, point_t points[]);
|
||||||
|
|
||||||
double *popNAN(double *xError); // Returns array without NAN values, if any exist
|
|
||||||
double windowXMean(int _arraylength, int xCount); // Returns mean value of given window
|
double windowXMean(int _arraylength, int xCount); // Returns mean value of given window
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
char *colorChannel = (char *)malloc(sizeof(char) * 32);
|
char *colorChannel = (char *)malloc(sizeof(char) * 32);
|
||||||
char *inputfile = (char *)malloc(sizeof(char) * 32);
|
char *inputfile = (char *)malloc(sizeof(char) * 32);
|
||||||
|
@ -72,7 +70,7 @@ int main(int argc, char **argv) {
|
||||||
unsigned int uint_buffer[1], windowBuffer[1];
|
unsigned int uint_buffer[1], windowBuffer[1];
|
||||||
double learnrate = 0.4;
|
double learnrate = 0.4;
|
||||||
char *istrue = "true";
|
char *istrue = "true";
|
||||||
|
char *templatePath = NULL;
|
||||||
|
|
||||||
while ((argc > 1) && (argv[1][0] == '-')) { // Parses parameters from stdin
|
while ((argc > 1) && (argv[1][0] == '-')) { // Parses parameters from stdin
|
||||||
switch (argv[1][1]) {
|
switch (argv[1][1]) {
|
||||||
|
@ -117,6 +115,10 @@ int main(int argc, char **argv) {
|
||||||
if (strstr(xBuffer, istrue)) {
|
if (strstr(xBuffer, istrue)) {
|
||||||
include = 1;
|
include = 1;
|
||||||
}
|
}
|
||||||
|
else if (xBuffer && !strstr(xBuffer, istrue)) {
|
||||||
|
templatePath = xBuffer;
|
||||||
|
include = 1;
|
||||||
|
}
|
||||||
else {
|
else {
|
||||||
printf("Wrong Argruments: %s\n", argv[1]);
|
printf("Wrong Argruments: %s\n", argv[1]);
|
||||||
usage(argv);
|
usage(argv);
|
||||||
|
@ -143,8 +145,7 @@ int main(int argc, char **argv) {
|
||||||
char fileName[50]; // Logfiles and their names
|
char fileName[50]; // Logfiles and their names
|
||||||
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
|
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
|
||||||
FILE* fp5 = fopen(fileName, "w");
|
FILE* fp5 = fopen(fileName, "w");
|
||||||
//xLength =
|
ppmColorChannel(fp5, image, colorChannel, mlData);
|
||||||
ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values, debugging
|
|
||||||
FILE* fp6 = fopen(fileName, "r");
|
FILE* fp6 = fopen(fileName, "r");
|
||||||
colorSamples(fp6, mlData);
|
colorSamples(fp6, mlData);
|
||||||
|
|
||||||
|
@ -163,22 +164,21 @@ int main(int argc, char **argv) {
|
||||||
printf("[%d] %lf\n", k, mlData->weights[k]);
|
printf("[%d] %lf\n", k, mlData->weights[k]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights
|
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights
|
||||||
FILE *fp0 = fopen(fileName, "w");
|
FILE *fp0 = fopen(fileName, "w");
|
||||||
for (k = 0; k < mlData->windowSize; k++) {
|
for (k = 0; k < mlData->windowSize; k++) {
|
||||||
fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);
|
fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);
|
||||||
}
|
}
|
||||||
|
|
||||||
fclose(fp0);
|
fclose(fp0);
|
||||||
|
|
||||||
/* *math magic* */
|
|
||||||
localMean(mlData, points);
|
localMean(mlData, points); // math magic functions
|
||||||
directPredecessor(mlData, points);
|
directPredecessor(mlData, points);
|
||||||
differentialPredecessor(mlData, points);
|
differentialPredecessor(mlData, points);
|
||||||
|
standardNLMS(mlData, points);
|
||||||
|
|
||||||
if (include == 1) {
|
if (include == 1) {
|
||||||
mkSvgGraph(points); // Graph building
|
mkSvgGraph(points, templatePath); // Graph building
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -189,6 +189,90 @@ int main(int argc, char **argv) {
|
||||||
printf("\nDONE!\n");
|
printf("\nDONE!\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
======================================================================================================
|
||||||
|
|
||||||
|
standardNLMS
|
||||||
|
|
||||||
|
basic nullified least mean square implementation
|
||||||
|
|
||||||
|
======================================================================================================
|
||||||
|
*/
|
||||||
|
void standardNLMS(mldata_t *mlData, point_t points[]) {
|
||||||
|
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||||
|
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
||||||
|
|
||||||
|
char fileName[512];
|
||||||
|
const unsigned xErrorLength = mlData->samplesCount;
|
||||||
|
|
||||||
|
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||||
|
for (int i = 0; i < mlData->samplesCount + 1; i++) {
|
||||||
|
xError[i] = 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned i, xCount = 0;
|
||||||
|
|
||||||
|
mkFileName(fileName, sizeof(fileName), STANDARD_NLMS);
|
||||||
|
FILE* fp01 = fopen(fileName, "w");
|
||||||
|
fprintf(fp01, fileHeader(STANDARD_NLMS_HEADER));
|
||||||
|
|
||||||
|
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_STANDARD_NLMS);
|
||||||
|
FILE* fp9 = fopen(fileName, "w");
|
||||||
|
|
||||||
|
double xMean = xSamples[0];
|
||||||
|
double xSquared = 0.0;
|
||||||
|
double xPredicted = 0.0;
|
||||||
|
double xActual = 0.0;
|
||||||
|
|
||||||
|
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) {
|
||||||
|
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
|
||||||
|
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
|
||||||
|
xPredicted = 0.0;
|
||||||
|
xActual = xSamples[xCount];
|
||||||
|
|
||||||
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
|
xPredicted += localWeights[i - 1] * xSamples[xCount - i];
|
||||||
|
}
|
||||||
|
xError[xCount] = xActual - xPredicted;
|
||||||
|
|
||||||
|
xSquared = 0.0;
|
||||||
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
|
xSquared += xSamples[xCount - i] * xSamples[xCount - i];
|
||||||
|
}
|
||||||
|
if (xSquared == 0) {
|
||||||
|
xSquared = 1.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
|
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
||||||
|
* (xSamples[xCount - i] / xSquared);
|
||||||
|
fprintf(fp9, "%lf;", localWeights[i - 1]);
|
||||||
|
}
|
||||||
|
fprintf(fp9, "\n");
|
||||||
|
fprintf(fp01, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
|
||||||
|
|
||||||
|
points[xCount].xVal[7] = xCount;
|
||||||
|
points[xCount].yVal[7] = xPredicted;
|
||||||
|
points[xCount].xVal[8] = xCount;
|
||||||
|
points[xCount].yVal[8] = xError[xCount];
|
||||||
|
}
|
||||||
|
fclose(fp9);
|
||||||
|
|
||||||
|
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||||
|
double deviation = 0.0;
|
||||||
|
|
||||||
|
for (i = 1; i < xErrorLength; i++) {
|
||||||
|
deviation += (xError[i] - mean) * (xError[i] - mean);
|
||||||
|
}
|
||||||
|
deviation /= xErrorLength;
|
||||||
|
printf("mean square err: %lf, variance: %lf\t\tNLMS\n", mean, deviation);
|
||||||
|
fprintf(fp01, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||||
|
|
||||||
|
free(localWeights);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
|
|
||||||
|
@ -201,11 +285,13 @@ Variant (1/3), substract local mean.
|
||||||
void localMean(mldata_t *mlData, point_t points[]) {
|
void localMean(mldata_t *mlData, point_t points[]) {
|
||||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||||
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
||||||
//localWeights = mlData->weights;
|
|
||||||
|
|
||||||
char fileName[50];
|
char fileName[512];
|
||||||
|
const unsigned xErrorLength = mlData->samplesCount;
|
||||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||||
memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero
|
for (int i = 0; i < mlData->samplesCount + 1; i++) {
|
||||||
|
xError[i] = 0.0;
|
||||||
|
}
|
||||||
unsigned i, xCount = 0; // Runtime vars
|
unsigned i, xCount = 0; // Runtime vars
|
||||||
|
|
||||||
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename
|
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename
|
||||||
|
@ -234,18 +320,17 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
||||||
xError[xCount] = xActual - xPredicted; // Get error value
|
xError[xCount] = xActual - xPredicted; // Get error value
|
||||||
xSquared = 0.0;
|
xSquared = 0.0;
|
||||||
for (i = 1; i < _arrayLength; i++) { // Get xSquared
|
for (i = 1; i < _arrayLength; i++) { // Get xSquared
|
||||||
double x = xSamples[xCount - i] - xMean;
|
xSquared += (xSamples[xCount - i] - xMean) * (xSamples[xCount - i] - xMean);
|
||||||
xSquared += x * x;
|
|
||||||
}
|
}
|
||||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||||
xSquared = 1.0;
|
xSquared = 1.0;
|
||||||
}
|
}
|
||||||
for (i = 1; i < _arrayLength; i++) { // Update weights
|
for (i = 1; i < _arrayLength; i++) { // Update weights
|
||||||
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean
|
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean
|
||||||
* ((xSamples[xCount - i] - xMean) / xSquared);
|
* ((xSamples[xCount - i] - xMean) / xSquared);
|
||||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
fprintf(fp9, "%lf;", localWeights[i - 1]);
|
||||||
}
|
}
|
||||||
|
fprintf(fp9, "\n");
|
||||||
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||||
|
|
||||||
points[xCount].xVal[1] = xCount; // Save points so graph can be build later on
|
points[xCount].xVal[1] = xCount; // Save points so graph can be build later on
|
||||||
|
@ -256,27 +341,19 @@ void localMean(mldata_t *mlData, point_t points[]) {
|
||||||
|
|
||||||
}
|
}
|
||||||
fclose(fp9);
|
fclose(fp9);
|
||||||
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
|
|
||||||
double xErrorLength = *xErrorPtr; // Watch popNAN()!
|
double mean = sum_array(xError, xErrorLength) / xErrorLength; // Mean
|
||||||
xErrorPtr[0] = 0.0;
|
|
||||||
// printf("Xerrorl:%lf", xErrorLength);
|
|
||||||
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean
|
|
||||||
double deviation = 0.0;
|
double deviation = 0.0;
|
||||||
|
|
||||||
for (i = 1; i < xErrorLength; i++) { // Mean square
|
for (i = 1; i < xErrorLength; i++) { // Mean square
|
||||||
double x = xError[i] - mean;
|
deviation += (xError[i] - mean) * (xError[i] - mean);
|
||||||
deviation += x*x;
|
|
||||||
}
|
}
|
||||||
deviation /= xErrorLength; // Deviation
|
deviation /= xErrorLength; // Deviation
|
||||||
printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
|
printf("mean square err: %lf, variance: %lf\t\tlocal Mean\n", mean, deviation);
|
||||||
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile
|
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile
|
||||||
//free(localWeights);
|
|
||||||
free(xErrorPtr);
|
|
||||||
free(xError);
|
|
||||||
|
|
||||||
fclose(fp4);
|
fclose(fp4);
|
||||||
|
|
||||||
//weightsLogger( local_weights, USED_WEIGHTS );
|
free(localWeights);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -292,11 +369,13 @@ substract direct predecessor
|
||||||
void directPredecessor(mldata_t *mlData, point_t points[]) {
|
void directPredecessor(mldata_t *mlData, point_t points[]) {
|
||||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||||
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
||||||
//localWeights = mlData->weights;
|
|
||||||
|
|
||||||
char fileName[512];
|
char fileName[512];
|
||||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
|
const unsigned xErrorLength = mlData->samplesCount;
|
||||||
memset(xError, 0.0, mlData->samplesCount);
|
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||||
|
for (int i = 0; i < mlData->samplesCount + 1; i++) {
|
||||||
|
xError[i] = 0.0;
|
||||||
|
}
|
||||||
unsigned xCount = 0, i;
|
unsigned xCount = 0, i;
|
||||||
double xActual = 0.0;
|
double xActual = 0.0;
|
||||||
double xPredicted = 0.0;
|
double xPredicted = 0.0;
|
||||||
|
@ -322,48 +401,40 @@ void directPredecessor(mldata_t *mlData, point_t points[]) {
|
||||||
|
|
||||||
double xSquared = 0.0;
|
double xSquared = 0.0;
|
||||||
for (i = 1; i < _arrayLength; i++) {
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
double x = xSamples[xCount - 1] - xSamples[xCount - i - 1];
|
xSquared += (xSamples[xCount - 1] - xSamples[xCount - i - 1])
|
||||||
xSquared += x*x; // substract direct predecessor
|
* (xSamples[xCount - 1] - xSamples[xCount - i - 1]); // substract direct predecessor
|
||||||
}
|
}
|
||||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||||
xSquared = 1.0;
|
xSquared = 1.0;
|
||||||
}
|
}
|
||||||
for (i = 1; i < _arrayLength; i++) { // Update weights
|
for (i = 1; i < _arrayLength; i++) { // Update weights
|
||||||
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
||||||
* ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
* ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
|
||||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
fprintf(fp9, "%lf;", localWeights[i - 1]);
|
||||||
}
|
}
|
||||||
|
fprintf(fp9, "\n");
|
||||||
|
|
||||||
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||||
points[xCount].xVal[2] = xCount; // Fill point_t array for graph building
|
points[xCount].xVal[2] = xCount; // Fill point_t array for graph building
|
||||||
points[xCount].yVal[2] = xPredicted;
|
points[xCount].yVal[2] = xPredicted;
|
||||||
points[xCount].xVal[5] = xCount;
|
points[xCount].xVal[5] = xCount;
|
||||||
points[xCount].yVal[5] = xError[xCount];
|
points[xCount].yVal[5] = xError[xCount];
|
||||||
// weightsLogger( fp, localWeights, USED_WEIGHTS );
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
fclose(fp9);
|
fclose(fp9);
|
||||||
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
|
|
||||||
double xErrorLength = *xErrorPtr; // Watch popNAN()!
|
|
||||||
xErrorPtr[0] = 0.0; // Stored length in [0] , won't be used anyway. Bit dirty
|
|
||||||
//printf("Xerrorl:%lf", xErrorLength);
|
|
||||||
|
|
||||||
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean
|
double mean = sum_array(xError, xErrorLength) / xErrorLength; // Mean
|
||||||
double deviation = 0.0;
|
double deviation = 0.0;
|
||||||
|
|
||||||
|
|
||||||
for (i = 1; i < xErrorLength; i++) {
|
for (i = 1; i < xErrorLength; i++) {
|
||||||
double x = xError[i] - mean;
|
deviation += (xError[i] - mean) * (xError[i] - mean); // Mean square
|
||||||
deviation += x*x; // Mean square
|
|
||||||
}
|
}
|
||||||
deviation /= xErrorLength; // Deviation
|
deviation /= xErrorLength; // Deviation
|
||||||
printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
|
printf("mean square err: %lf, variance: %lf\t\t\tdirect Predecessor\n", mean, deviation);
|
||||||
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||||
fclose(fp3);
|
fclose(fp3);
|
||||||
//free(localWeights);
|
|
||||||
free(xErrorPtr);
|
free(localWeights);
|
||||||
free(xError);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -378,14 +449,18 @@ differential predecessor.
|
||||||
*/
|
*/
|
||||||
void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
||||||
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
|
||||||
|
|
||||||
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
|
||||||
//localWeights = mlData->weights;
|
const unsigned xErrorLength = mlData->samplesCount;
|
||||||
|
|
||||||
char fileName[512];
|
char fileName[512];
|
||||||
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
|
|
||||||
memset(xError, 0.0, mlData->samplesCount);
|
|
||||||
|
|
||||||
unsigned xCount = 0, i;
|
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
|
||||||
|
|
||||||
|
for (int i = 0; i < mlData->samplesCount + 1; i++) {
|
||||||
|
xError[i] = 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned xCount = 0,i = 0;
|
||||||
double xPredicted = 0.0;
|
double xPredicted = 0.0;
|
||||||
double xActual = 0.0;
|
double xActual = 0.0;
|
||||||
|
|
||||||
|
@ -410,19 +485,20 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
||||||
|
|
||||||
double xSquared = 0.0;
|
double xSquared = 0.0;
|
||||||
for (i = 1; i < _arrayLength; i++) {
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
double x = xSamples[xCount - i] - xSamples[xCount - i - 1];
|
xSquared += (xSamples[xCount - i] - xSamples[xCount - i - 1])
|
||||||
xSquared += x*x; // Substract direct predecessor
|
* (xSamples[xCount - i] - xSamples[xCount - i - 1]); // Substract direct predecessor
|
||||||
}
|
}
|
||||||
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
|
||||||
xSquared = 1.0;
|
xSquared = 1.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (i = 1; i < _arrayLength; i++) {
|
for (i = 1; i < _arrayLength; i++) {
|
||||||
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
|
||||||
* ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
* ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
|
||||||
fprintf(fp9, "%lf\n", localWeights[i]);
|
fprintf(fp9, "%lf;", localWeights[i - 1]);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
fprintf(fp9, "\n");
|
||||||
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
|
||||||
|
|
||||||
points[xCount].xVal[3] = xCount;
|
points[xCount].xVal[3] = xCount;
|
||||||
|
@ -432,29 +508,20 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
|
||||||
|
|
||||||
}
|
}
|
||||||
fclose(fp9);
|
fclose(fp9);
|
||||||
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
|
|
||||||
double xErrorLength = *xErrorPtr; // Watch popNAN()!
|
|
||||||
xErrorPtr[0] = 0.0;
|
|
||||||
// printf("Xerrorl:%lf", xErrorLength);
|
|
||||||
|
|
||||||
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
|
double mean = sum_array(xError, xErrorLength) / xErrorLength;
|
||||||
double deviation = 0.0;
|
double deviation = 0.0;
|
||||||
|
|
||||||
|
|
||||||
for (i = 1; i < xErrorLength; i++) { // Mean square
|
for (i = 1; i < xErrorLength; i++) { // Mean square
|
||||||
double x = xError[i] - mean;
|
deviation += (xError[i] - mean) * (xError[i] - mean);
|
||||||
deviation += x*x;
|
|
||||||
}
|
}
|
||||||
deviation /= xErrorLength;
|
deviation /= xErrorLength;
|
||||||
printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
|
printf("mean square err: %lf, variance: %lf\t\t\tdifferential Predecessor\n", mean, deviation);
|
||||||
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
|
||||||
fclose(fp6);
|
fclose(fp6);
|
||||||
//free(localWeights);
|
|
||||||
free(xErrorPtr);
|
|
||||||
free(xError);
|
|
||||||
|
|
||||||
|
free(localWeights);
|
||||||
// weightsLogger( localWeights, USED_WEIGHTS );
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -499,6 +566,8 @@ char * fileSuffix(int id) {
|
||||||
"_differential_predecessor.txt",
|
"_differential_predecessor.txt",
|
||||||
"_weights_used_local_mean.txt",
|
"_weights_used_local_mean.txt",
|
||||||
"_weights_used_diff_pred.txt",
|
"_weights_used_diff_pred.txt",
|
||||||
|
"_standard_least_mean_square.txt",
|
||||||
|
"_weights_used_std_nlms.txt"
|
||||||
};
|
};
|
||||||
return suffix[id];
|
return suffix[id];
|
||||||
}
|
}
|
||||||
|
@ -515,7 +584,8 @@ Contains and returns header from logfiles
|
||||||
char * fileHeader(int id) {
|
char * fileHeader(int id) {
|
||||||
char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
||||||
"\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
"\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
||||||
"\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n"
|
"\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
|
||||||
|
"\n========================= Nullified Least Mean Square =========================\nNo.\txPredicted\txAcutal\t\txError\n"
|
||||||
};
|
};
|
||||||
return header[id];
|
return header[id];
|
||||||
}
|
}
|
||||||
|
@ -525,7 +595,7 @@ char * fileHeader(int id) {
|
||||||
|
|
||||||
weightsLogger
|
weightsLogger
|
||||||
|
|
||||||
Logs used weights to logfile
|
Logs used weights to logfile - not used right now
|
||||||
|
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
*/
|
*/
|
||||||
|
@ -553,13 +623,14 @@ formats output of mkSvgGraph -- Please open graphResults.html to see the output-
|
||||||
[4] = xError from localMean,
|
[4] = xError from localMean,
|
||||||
[5] = xError from directPredecessor,
|
[5] = xError from directPredecessor,
|
||||||
[6] = xError from differentialPredecessor
|
[6] = xError from differentialPredecessor
|
||||||
|
[7] = xPredicted from NLMS,
|
||||||
|
[8] = xError from NLMS
|
||||||
|
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
*/
|
*/
|
||||||
void bufferLogger(char *buffer, point_t points[]) {
|
void bufferLogger(char *buffer, point_t points[]) {
|
||||||
unsigned i;
|
unsigned i;
|
||||||
char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen
|
char _buffer[512] = "";
|
||||||
// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1);
|
|
||||||
for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual
|
for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual
|
||||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
|
||||||
strcat(buffer, _buffer);
|
strcat(buffer, _buffer);
|
||||||
|
@ -570,7 +641,7 @@ void bufferLogger(char *buffer, point_t points[]) {
|
||||||
strcat(buffer, _buffer);
|
strcat(buffer, _buffer);
|
||||||
}
|
}
|
||||||
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
||||||
for (i = 1; i <= mlData->samplesCount - 1; i++) { //xPredicted from directPredecessor
|
for (i = 1; i <= mlData->samplesCount - 2; i++) { //xPredicted from directPredecessor
|
||||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
|
||||||
strcat(buffer, _buffer);
|
strcat(buffer, _buffer);
|
||||||
}
|
}
|
||||||
|
@ -579,7 +650,14 @@ void bufferLogger(char *buffer, point_t points[]) {
|
||||||
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
|
||||||
strcat(buffer, _buffer);
|
strcat(buffer, _buffer);
|
||||||
}
|
}
|
||||||
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
|
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
|
||||||
|
for (i = 1; i < mlData->samplesCount - 1; i++) { //xPredicted from diff Pred
|
||||||
|
sprintf(_buffer, "L %f %f\n", points[i].xVal[7], points[i].yVal[7]);
|
||||||
|
strcat(buffer, _buffer);
|
||||||
|
}
|
||||||
|
strcat(buffer, "\" fill=\"none\" id=\"svg_5\" stroke=\"gray\" stroke-width=\"0.4px\"/>\n");
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -606,40 +684,6 @@ double sum_array(double x[], int xlength) {
|
||||||
/*
|
/*
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
|
|
||||||
popNan
|
|
||||||
|
|
||||||
returns new array without NAN values
|
|
||||||
|
|
||||||
======================================================================================================
|
|
||||||
*/
|
|
||||||
double *popNAN(double *xError) {
|
|
||||||
unsigned i, counter = 1;
|
|
||||||
double tmpLength = 0.0;
|
|
||||||
double *tmp = NULL;
|
|
||||||
double *more_tmp = NULL;
|
|
||||||
|
|
||||||
for (i = 0; i < mlData->samplesCount - 1; i++) {
|
|
||||||
counter++;
|
|
||||||
more_tmp = (double *)realloc(tmp, counter*(sizeof(double)));
|
|
||||||
if (!isnan(xError[i])) {
|
|
||||||
tmp = more_tmp;
|
|
||||||
tmp[counter - 1] = xError[i];
|
|
||||||
//printf("xERROR:%lf\n", tmp[counter - 1]);
|
|
||||||
tmpLength++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
counter += 1;
|
|
||||||
more_tmp = (double *)realloc(tmp, counter * sizeof(double));
|
|
||||||
tmp = more_tmp;
|
|
||||||
*tmp = tmpLength; // Length of array is stored inside tmp[0]. tmp[0] is never used anyways
|
|
||||||
|
|
||||||
return tmp;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
======================================================================================================
|
|
||||||
|
|
||||||
r2
|
r2
|
||||||
|
|
||||||
returns a random double value between 0 and 1
|
returns a random double value between 0 and 1
|
||||||
|
@ -673,24 +717,26 @@ parses template.svg and writes results in said template
|
||||||
|
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
*/
|
*/
|
||||||
void mkSvgGraph(point_t points[]) {
|
void mkSvgGraph(point_t points[], char *templatePath) {
|
||||||
FILE *input = fopen("graphResults_template.html", "r");
|
FILE* input = NULL;
|
||||||
FILE *target = fopen("graphResults.html", "w");
|
FILE *target = fopen("graphResults.html", "w");
|
||||||
|
if (templatePath) {
|
||||||
|
printf("\ngraph template src at: %s\n", templatePath);
|
||||||
|
input = fopen(templatePath, "r");
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
input = fopen("graphResults_template.html", "r");
|
||||||
|
}
|
||||||
|
|
||||||
char line[512];
|
char line[512];
|
||||||
char firstGraph[15] = { "<path d=\"M0 0" }; // Position where points will be written after
|
char firstGraph[15] = { "<path d=\"M0 0" }; // Position where points will be written after
|
||||||
|
|
||||||
if (input == NULL) {
|
if (input == NULL) {
|
||||||
printf("No inputfile at mkSvgGraph()");
|
printf("\nNo inputfile at mkSvgGraph()\n");
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
}
|
}
|
||||||
|
|
||||||
fseek(input, 0, SEEK_END);
|
char buffer[131072] = ""; // Really really dirty
|
||||||
long fpLength = ftell(input);
|
|
||||||
fseek(input, 0, SEEK_SET);
|
|
||||||
|
|
||||||
|
|
||||||
char buffer[131072] = ""; // Bit dirty
|
|
||||||
// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) );
|
|
||||||
|
|
||||||
memset(buffer, '\0', sizeof(buffer));
|
memset(buffer, '\0', sizeof(buffer));
|
||||||
while (!feof(input)) { // parses file until "firstGraph" has been found
|
while (!feof(input)) { // parses file until "firstGraph" has been found
|
||||||
|
@ -728,7 +774,7 @@ static imagePixel_t *rdPPM(char *fileName) {
|
||||||
perror(fileName);
|
perror(fileName);
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
}
|
}
|
||||||
if (buffer[0] != 'P' || buffer[1] != '6') {
|
if (buffer[0] != 'P' || buffer[1] != '6') { // PPM files start with P6
|
||||||
fprintf(stderr, "No PPM file format\n");
|
fprintf(stderr, "No PPM file format\n");
|
||||||
exit(EXIT_FAILURE);
|
exit(EXIT_FAILURE);
|
||||||
}
|
}
|
||||||
|
@ -737,7 +783,7 @@ static imagePixel_t *rdPPM(char *fileName) {
|
||||||
fprintf(stderr, "malloc() failed");
|
fprintf(stderr, "malloc() failed");
|
||||||
}
|
}
|
||||||
c = getc(fp);
|
c = getc(fp);
|
||||||
while (c == '#') {
|
while (c == '#') { // PPM Comments start with #
|
||||||
while (getc(fp) != '\n');
|
while (getc(fp) != '\n');
|
||||||
c = getc(fp);
|
c = getc(fp);
|
||||||
}
|
}
|
||||||
|
@ -763,7 +809,7 @@ static imagePixel_t *rdPPM(char *fileName) {
|
||||||
printf("Changing \"-n\" to %d, image max data size\n", (image->x * image->y));
|
printf("Changing \"-n\" to %d, image max data size\n", (image->x * image->y));
|
||||||
tmp = (double *)realloc(xSamples, sizeof(double) * (image->x * image->y));
|
tmp = (double *)realloc(xSamples, sizeof(double) * (image->x * image->y));
|
||||||
xSamples = tmp;
|
xSamples = tmp;
|
||||||
mlData->samplesCount = (image->x * image->y) / sizeof(double);
|
mlData->samplesCount = (image->x * image->y);
|
||||||
}
|
}
|
||||||
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
|
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
|
||||||
fprintf(stderr, "Loading image failed");
|
fprintf(stderr, "Loading image failed");
|
||||||
|
@ -852,7 +898,6 @@ void colorSamples(FILE* fp, mldata_t *mlData) {
|
||||||
while (!feof(fp)) {
|
while (!feof(fp)) {
|
||||||
if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
|
if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
|
||||||
sscanf(buffer, "%lf", &xSamples[i]);
|
sscanf(buffer, "%lf", &xSamples[i]);
|
||||||
//printf("%lf\n", xSamples[i] );
|
|
||||||
points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph
|
points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph
|
||||||
points[i].xVal[0] = i;
|
points[i].xVal[0] = i;
|
||||||
++i;
|
++i;
|
||||||
|
@ -874,7 +919,7 @@ double windowXMean(int _arraylength, int xCount) {
|
||||||
double sum = 0.0;
|
double sum = 0.0;
|
||||||
double *ptr;
|
double *ptr;
|
||||||
|
|
||||||
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window
|
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window and iterate through array
|
||||||
sum += *ptr;
|
sum += *ptr;
|
||||||
}
|
}
|
||||||
return sum / (double)_arraylength;
|
return sum / (double)_arraylength;
|
||||||
|
@ -898,10 +943,10 @@ void usage(char **argv) {
|
||||||
printf("\t-c <color>\t\tUse this color channel from inputfile.\n");
|
printf("\t-c <color>\t\tUse this color channel from inputfile.\n");
|
||||||
printf("\t-w <digit>\t\tCount of used weights (windowSize).\n");
|
printf("\t-w <digit>\t\tCount of used weights (windowSize).\n");
|
||||||
printf("\t-l <digit>\t\tLearnrate, 0 < learnrate < 1.\n");
|
printf("\t-l <digit>\t\tLearnrate, 0 < learnrate < 1.\n");
|
||||||
printf("\t-x true\t\t\tLogfiles only, no graph building.\n\t\t\t\tChoose for intense amount of input data.\n");
|
printf("\t-g <path> or true\t\t\tGraph building.Path if you have changed the folder of the template. Otherwise use true.\n\t\t\t\tChoose for n < 1200.\n");
|
||||||
printf("\t-s <digit>\t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n");
|
printf("\t-s <digit>\t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n");
|
||||||
printf("\n\n");
|
printf("\n\n");
|
||||||
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -x true\n", &argv[0][0], &argv[0][0]);
|
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -g true\n", &argv[0][0], &argv[0][0]);
|
||||||
exit(8);
|
exit(8);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -911,7 +956,7 @@ void usage(char **argv) {
|
||||||
init_mldata_t
|
init_mldata_t
|
||||||
|
|
||||||
|
|
||||||
Contains meachine learning data
|
Init meachine learning data
|
||||||
|
|
||||||
======================================================================================================
|
======================================================================================================
|
||||||
*/
|
*/
|
||||||
|
|
Loading…
Reference in New Issue