This commit is contained in:
gurkenhabicht 2018-06-13 07:51:19 +02:00
commit f482ac5e70
1 changed files with 190 additions and 145 deletions

View File

@ -19,25 +19,24 @@ Created by Stefan Friese on 26.04.2018
typedef SSIZE_T ssize_t;
#endif
double *xSamples; // Input values
mldata_t *mlData = NULL; // Machine learning
double *xSamples; // Input color values from PPM
mldata_t *mlData = NULL; // Machine learning realted data
point_t *points = NULL; // Graphing
/* *graph building* */
/* *Graph building* */
static imagePixel_t * rdPPM(char *fileName); // Read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // Writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image, // Writes colorChannel from PPM file to log file
char *colorChannel, mldata_t *mlData);
void colorSamples(FILE* fp, mldata_t *mlData); // Stores color channel values in xSamples
/* *file handling* */
char * mkFileName(char* buffer,
/* *File handling* */
char * mkFileName(char* buffer, // Date+suffix as filename
size_t max_len, int suffixId);
char *fileSuffix(int id);
char *fileSuffix(int id); // Filename ending of logs
char *fileHeader(int id); // Header inside the logfiles
//void myLogger ( FILE* fp, point_t points[] );
void bufferLogger(char *buffer, point_t points[]); // Writes points to graph template
void mkSvgGraph(point_t points[]); // Parses graph template and calls bufferLogger()
void mkSvgGraph(point_t points[], char *templatePath); // Parses graph template and calls bufferLogger()
void weightsLogger(double *weights, int suffix); // Writes updated weights to a file
/* *rand seed* */
@ -54,12 +53,11 @@ double sum_array(double x[], int length);
void localMean(mldata_t *mlData, point_t points[]); // First,
void directPredecessor(mldata_t *mlData, point_t points[]); // Second,
void differentialPredecessor(mldata_t *mlData, point_t points[]); // Third filter implementation
void standardNLMS(mldata_t *mlData, point_t points[]);
double *popNAN(double *xError); // Returns array without NAN values, if any exist
double windowXMean(int _arraylength, int xCount); // Returns mean value of given window
int main(int argc, char **argv) {
char *colorChannel = (char *)malloc(sizeof(char) * 32);
char *inputfile = (char *)malloc(sizeof(char) * 32);
@ -72,7 +70,7 @@ int main(int argc, char **argv) {
unsigned int uint_buffer[1], windowBuffer[1];
double learnrate = 0.4;
char *istrue = "true";
char *templatePath = NULL;
while ((argc > 1) && (argv[1][0] == '-')) { // Parses parameters from stdin
switch (argv[1][1]) {
@ -117,6 +115,10 @@ int main(int argc, char **argv) {
if (strstr(xBuffer, istrue)) {
include = 1;
}
else if (xBuffer && !strstr(xBuffer, istrue)) {
templatePath = xBuffer;
include = 1;
}
else {
printf("Wrong Argruments: %s\n", argv[1]);
usage(argv);
@ -143,8 +145,7 @@ int main(int argc, char **argv) {
char fileName[50]; // Logfiles and their names
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
//xLength =
ppmColorChannel(fp5, image, colorChannel, mlData); // Returns length of ppm input values, debugging
ppmColorChannel(fp5, image, colorChannel, mlData);
FILE* fp6 = fopen(fileName, "r");
colorSamples(fp6, mlData);
@ -163,22 +164,21 @@ int main(int argc, char **argv) {
printf("[%d] %lf\n", k, mlData->weights[k]);
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS); // Logfile weights
FILE *fp0 = fopen(fileName, "w");
for (k = 0; k < mlData->windowSize; k++) {
fprintf(fp0, "[%d]%lf\n", k, mlData->weights[k]);
}
fclose(fp0);
/* *math magic* */
localMean(mlData, points);
localMean(mlData, points); // math magic functions
directPredecessor(mlData, points);
differentialPredecessor(mlData, points);
standardNLMS(mlData, points);
if (include == 1) {
mkSvgGraph(points); // Graph building
mkSvgGraph(points, templatePath); // Graph building
}
@ -189,6 +189,90 @@ int main(int argc, char **argv) {
printf("\nDONE!\n");
}
/*
======================================================================================================
standardNLMS
basic nullified least mean square implementation
======================================================================================================
*/
void standardNLMS(mldata_t *mlData, point_t points[]) {
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
char fileName[512];
const unsigned xErrorLength = mlData->samplesCount;
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
for (int i = 0; i < mlData->samplesCount + 1; i++) {
xError[i] = 0.0;
}
unsigned i, xCount = 0;
mkFileName(fileName, sizeof(fileName), STANDARD_NLMS);
FILE* fp01 = fopen(fileName, "w");
fprintf(fp01, fileHeader(STANDARD_NLMS_HEADER));
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_STANDARD_NLMS);
FILE* fp9 = fopen(fileName, "w");
double xMean = xSamples[0];
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) {
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
xPredicted = 0.0;
xActual = xSamples[xCount];
for (i = 1; i < _arrayLength; i++) {
xPredicted += localWeights[i - 1] * xSamples[xCount - i];
}
xError[xCount] = xActual - xPredicted;
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += xSamples[xCount - i] * xSamples[xCount - i];
}
if (xSquared == 0) {
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) {
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
* (xSamples[xCount - i] / xSquared);
fprintf(fp9, "%lf;", localWeights[i - 1]);
}
fprintf(fp9, "\n");
fprintf(fp01, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[7] = xCount;
points[xCount].yVal[7] = xPredicted;
points[xCount].xVal[8] = xCount;
points[xCount].yVal[8] = xError[xCount];
}
fclose(fp9);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 1; i < xErrorLength; i++) {
deviation += (xError[i] - mean) * (xError[i] - mean);
}
deviation /= xErrorLength;
printf("mean square err: %lf, variance: %lf\t\tNLMS\n", mean, deviation);
fprintf(fp01, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
free(localWeights);
}
/*
======================================================================================================
@ -201,12 +285,14 @@ Variant (1/3), substract local mean.
void localMean(mldata_t *mlData, point_t points[]) {
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
//localWeights = mlData->weights;
char fileName[50];
char fileName[512];
const unsigned xErrorLength = mlData->samplesCount;
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
memset(xError, 0.0, mlData->samplesCount); // Initialize xError-array with Zero
unsigned i, xCount = 0; // Runtime vars
for (int i = 0; i < mlData->samplesCount + 1; i++) {
xError[i] = 0.0;
}
unsigned i, xCount = 0; // Runtime vars
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN); // Create Logfile and its filename
FILE* fp4 = fopen(fileName, "w");
@ -221,7 +307,7 @@ void localMean(mldata_t *mlData, point_t points[]) {
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // First value will not get predicted
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // First value will not get predicted
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount; // Ensures corect length at start
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
xPredicted = 0.0;
@ -234,18 +320,17 @@ void localMean(mldata_t *mlData, point_t points[]) {
xError[xCount] = xActual - xPredicted; // Get error value
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { // Get xSquared
double x = xSamples[xCount - i] - xMean;
xSquared += x * x;
xSquared += (xSamples[xCount - i] - xMean) * (xSamples[xCount - i] - xMean);
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) { // Update weights
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount] // Substract localMean
* ((xSamples[xCount - i] - xMean) / xSquared);
fprintf(fp9, "%lf\n", localWeights[i]);
fprintf(fp9, "%lf;", localWeights[i - 1]);
}
fprintf(fp9, "\n");
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
points[xCount].xVal[1] = xCount; // Save points so graph can be build later on
@ -256,27 +341,19 @@ void localMean(mldata_t *mlData, point_t points[]) {
}
fclose(fp9);
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
// printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean
double mean = sum_array(xError, xErrorLength) / xErrorLength; // Mean
double deviation = 0.0;
for (i = 1; i < xErrorLength; i++) { // Mean square
double x = xError[i] - mean;
deviation += x*x;
deviation += (xError[i] - mean) * (xError[i] - mean);
}
deviation /= xErrorLength; // Deviation
printf("mean:%lf, devitation:%lf\t\tlocal Mean\n", mean, deviation);
printf("mean square err: %lf, variance: %lf\t\tlocal Mean\n", mean, deviation);
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean); // Write to logfile
//free(localWeights);
free(xErrorPtr);
free(xError);
fclose(fp4);
//weightsLogger( local_weights, USED_WEIGHTS );
free(localWeights);
}
/*
@ -292,23 +369,25 @@ substract direct predecessor
void directPredecessor(mldata_t *mlData, point_t points[]) {
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
//localWeights = mlData->weights;
char fileName[512];
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
memset(xError, 0.0, mlData->samplesCount);
const unsigned xErrorLength = mlData->samplesCount;
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
for (int i = 0; i < mlData->samplesCount + 1; i++) {
xError[i] = 0.0;
}
unsigned xCount = 0, i;
double xActual = 0.0;
double xPredicted = 0.0;
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR); // Logfile and name handling
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, fileHeader(DIRECT_PREDECESSOR_HEADER));
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS_DIR_PRED);
FILE *fp9 = fopen(fileName, "w");
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // first value will not get predicted
for (xCount = 1; xCount < mlData->samplesCount - 1; xCount++) { // first value will not get predicted
unsigned _arrayLength = (xCount > mlData->windowSize) ? mlData->windowSize + 1 : xCount;
xPredicted = 0.0;
xActual = xSamples[xCount];
@ -322,48 +401,40 @@ void directPredecessor(mldata_t *mlData, point_t points[]) {
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
double x = xSamples[xCount - 1] - xSamples[xCount - i - 1];
xSquared += x*x; // substract direct predecessor
xSquared += (xSamples[xCount - 1] - xSamples[xCount - i - 1])
* (xSamples[xCount - 1] - xSamples[xCount - i - 1]); // substract direct predecessor
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) { // Update weights
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
* ((xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
fprintf(fp9, "%lf\n", localWeights[i]);
fprintf(fp9, "%lf;", localWeights[i - 1]);
}
fprintf(fp9, "\n");
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
points[xCount].xVal[2] = xCount; // Fill point_t array for graph building
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
// weightsLogger( fp, localWeights, USED_WEIGHTS );
}
fclose(fp9);
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0; // Stored length in [0] , won't be used anyway. Bit dirty
//printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength; // Mean
double mean = sum_array(xError, xErrorLength) / xErrorLength; // Mean
double deviation = 0.0;
for (i = 1; i < xErrorLength; i++) {
double x = xError[i] - mean;
deviation += x*x; // Mean square
deviation += (xError[i] - mean) * (xError[i] - mean); // Mean square
}
deviation /= xErrorLength; // Deviation
printf("mean:%lf, devitation:%lf\t\tdirect Predecessor\n", mean, deviation);
printf("mean square err: %lf, variance: %lf\t\t\tdirect Predecessor\n", mean, deviation);
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp3);
//free(localWeights);
free(xErrorPtr);
free(xError);
free(localWeights);
}
/*
@ -378,14 +449,18 @@ differential predecessor.
*/
void differentialPredecessor(mldata_t *mlData, point_t points[]) {
double *localWeights = (double *)malloc(sizeof(double) * mlData->windowSize + 1);
memcpy(localWeights, mlData->weights, sizeof(double) * mlData->windowSize + 1);
//localWeights = mlData->weights;
const unsigned xErrorLength = mlData->samplesCount;
char fileName[512];
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1);
memset(xError, 0.0, mlData->samplesCount);
unsigned xCount = 0, i;
double *xError = (double *)malloc(sizeof(double) * mlData->samplesCount + 1); // Includes e(n)
for (int i = 0; i < mlData->samplesCount + 1; i++) {
xError[i] = 0.0;
}
unsigned xCount = 0,i = 0;
double xPredicted = 0.0;
double xActual = 0.0;
@ -410,20 +485,21 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
double x = xSamples[xCount - i] - xSamples[xCount - i - 1];
xSquared += x*x; // Substract direct predecessor
xSquared += (xSamples[xCount - i] - xSamples[xCount - i - 1])
* (xSamples[xCount - i] - xSamples[xCount - i - 1]); // Substract direct predecessor
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) {
localWeights[i-1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
localWeights[i - 1] = localWeights[i - 1] + mlData->learnrate * xError[xCount]
* ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
fprintf(fp9, "%lf\n", localWeights[i]);
fprintf(fp9, "%lf;", localWeights[i - 1]);
}
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
fprintf(fp9, "\n");
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]); // Write to logfile
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
@ -432,29 +508,20 @@ void differentialPredecessor(mldata_t *mlData, point_t points[]) {
}
fclose(fp9);
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
// printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 1; i < xErrorLength; i++) { // Mean square
double x = xError[i] - mean;
deviation += x*x;
deviation += (xError[i] - mean) * (xError[i] - mean);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf\t\tdifferential Predecessor\n", mean, deviation);
printf("mean square err: %lf, variance: %lf\t\t\tdifferential Predecessor\n", mean, deviation);
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp6);
//free(localWeights);
free(xErrorPtr);
free(xError);
// weightsLogger( localWeights, USED_WEIGHTS );
free(localWeights);
}
/*
@ -499,6 +566,8 @@ char * fileSuffix(int id) {
"_differential_predecessor.txt",
"_weights_used_local_mean.txt",
"_weights_used_diff_pred.txt",
"_standard_least_mean_square.txt",
"_weights_used_std_nlms.txt"
};
return suffix[id];
}
@ -515,7 +584,8 @@ Contains and returns header from logfiles
char * fileHeader(int id) {
char * header[] = { "\n=========================== Local Mean ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
"\n=========================== Direct Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
"\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n"
"\n=========================== Differential Predecessor ===========================\nNo.\txPredicted\txAcutal\t\txError\n",
"\n========================= Nullified Least Mean Square =========================\nNo.\txPredicted\txAcutal\t\txError\n"
};
return header[id];
}
@ -525,7 +595,7 @@ char * fileHeader(int id) {
weightsLogger
Logs used weights to logfile
Logs used weights to logfile - not used right now
======================================================================================================
*/
@ -553,13 +623,14 @@ formats output of mkSvgGraph -- Please open graphResults.html to see the output-
[4] = xError from localMean,
[5] = xError from directPredecessor,
[6] = xError from differentialPredecessor
[7] = xPredicted from NLMS,
[8] = xError from NLMS
======================================================================================================
*/
void bufferLogger(char *buffer, point_t points[]) {
unsigned i;
char _buffer[512] = ""; // TODO: resize buffer and _buffer so greater sampleval can be choosen
// char *_buffer = (char *) malloc ( sizeof(char) * 512 + 1);
char _buffer[512] = "";
for (i = 1; i < mlData->samplesCount - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
@ -570,7 +641,7 @@ void bufferLogger(char *buffer, point_t points[]) {
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 1; i <= mlData->samplesCount - 1; i++) { //xPredicted from directPredecessor
for (i = 1; i <= mlData->samplesCount - 2; i++) { //xPredicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
@ -579,7 +650,14 @@ void bufferLogger(char *buffer, point_t points[]) {
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 1; i < mlData->samplesCount - 1; i++) { //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[7], points[i].yVal[7]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_5\" stroke=\"gray\" stroke-width=\"0.4px\"/>\n");
}
/*
@ -606,40 +684,6 @@ double sum_array(double x[], int xlength) {
/*
======================================================================================================
popNan
returns new array without NAN values
======================================================================================================
*/
double *popNAN(double *xError) {
unsigned i, counter = 1;
double tmpLength = 0.0;
double *tmp = NULL;
double *more_tmp = NULL;
for (i = 0; i < mlData->samplesCount - 1; i++) {
counter++;
more_tmp = (double *)realloc(tmp, counter*(sizeof(double)));
if (!isnan(xError[i])) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
//printf("xERROR:%lf\n", tmp[counter - 1]);
tmpLength++;
}
}
counter += 1;
more_tmp = (double *)realloc(tmp, counter * sizeof(double));
tmp = more_tmp;
*tmp = tmpLength; // Length of array is stored inside tmp[0]. tmp[0] is never used anyways
return tmp;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
@ -673,24 +717,26 @@ parses template.svg and writes results in said template
======================================================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("graphResults_template.html", "r");
void mkSvgGraph(point_t points[], char *templatePath) {
FILE* input = NULL;
FILE *target = fopen("graphResults.html", "w");
if (templatePath) {
printf("\ngraph template src at: %s\n", templatePath);
input = fopen(templatePath, "r");
}
else {
input = fopen("graphResults_template.html", "r");
}
char line[512];
char firstGraph[15] = { "<path d=\"M0 0" }; // Position where points will be written after
if (input == NULL) {
printf("No inputfile at mkSvgGraph()");
printf("\nNo inputfile at mkSvgGraph()\n");
exit(EXIT_FAILURE);
}
fseek(input, 0, SEEK_END);
long fpLength = ftell(input);
fseek(input, 0, SEEK_SET);
char buffer[131072] = ""; // Bit dirty
// char *buffer = (char *) malloc ( sizeof(char) * ( ( 3 * mlData->samplesCount ) + fpLength + 1 ) );
char buffer[131072] = ""; // Really really dirty
memset(buffer, '\0', sizeof(buffer));
while (!feof(input)) { // parses file until "firstGraph" has been found
@ -728,7 +774,7 @@ static imagePixel_t *rdPPM(char *fileName) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
if (buffer[0] != 'P' || buffer[1] != '6') { // PPM files start with P6
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
@ -737,7 +783,7 @@ static imagePixel_t *rdPPM(char *fileName) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (c == '#') { // PPM Comments start with #
while (getc(fp) != '\n');
c = getc(fp);
}
@ -763,7 +809,7 @@ static imagePixel_t *rdPPM(char *fileName) {
printf("Changing \"-n\" to %d, image max data size\n", (image->x * image->y));
tmp = (double *)realloc(xSamples, sizeof(double) * (image->x * image->y));
xSamples = tmp;
mlData->samplesCount = (image->x * image->y) / sizeof(double);
mlData->samplesCount = (image->x * image->y);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
@ -852,7 +898,6 @@ void colorSamples(FILE* fp, mldata_t *mlData) {
while (!feof(fp)) {
if (fgets(buffer, mlData->samplesCount, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i]; // Fills points so actual input values can be seen as a graph
points[i].xVal[0] = i;
++i;
@ -874,7 +919,7 @@ double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { // Set ptr to beginning of window and iterate through array
sum += *ptr;
}
return sum / (double)_arraylength;
@ -898,10 +943,10 @@ void usage(char **argv) {
printf("\t-c <color>\t\tUse this color channel from inputfile.\n");
printf("\t-w <digit>\t\tCount of used weights (windowSize).\n");
printf("\t-l <digit>\t\tLearnrate, 0 < learnrate < 1.\n");
printf("\t-x true\t\t\tLogfiles only, no graph building.\n\t\t\t\tChoose for intense amount of input data.\n");
printf("\t-g <path> or true\t\t\tGraph building.Path if you have changed the folder of the template. Otherwise use true.\n\t\t\t\tChoose for n < 1200.\n");
printf("\t-s <digit>\t\tDigit for random seed generator.\n\t\t\t\tSame Digits produce same random values. Default is srand by time.\n");
printf("\n\n");
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -x true\n", &argv[0][0], &argv[0][0]);
printf("%s compares prediction methods of least mean square filters.\nBy default it reads ppm file format and return logfiles as well\nas an svg graphs as an output of said least mean square methods.\n\nExample:\n\t%s -i myimage.ppm -w 3 -c green -s 5 -g true\n", &argv[0][0], &argv[0][0]);
exit(8);
}
@ -911,7 +956,7 @@ void usage(char **argv) {
init_mldata_t
Contains meachine learning data
Init meachine learning data
======================================================================================================
*/