restructured

This commit is contained in:
gurkenhabicht 2018-05-16 11:18:36 +02:00
parent 2e607b79fd
commit f597b528f0
11 changed files with 0 additions and 2785 deletions

BIN
.DS_Store vendored Normal file

Binary file not shown.

BIN
bin/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -1,6 +0,0 @@
all: NLMSvariants.c
gcc -o lms NLMSvariants.c
clean:
$(RM) lms

View File

@ -1,789 +0,0 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
//
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#define NUMBER_OF_SAMPLES 500
#define WINDOWSIZE 5
#define learnrate 0.8
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
enum fileSuffix_t{ // used in conjunction with mkFileName()
PURE_WEIGHTS,
USED_WEIGHTS,
DIRECT_PREDECESSOR,
RESULTS,
LOCAL_MEAN,
TEST_VALUES,
DIFFERENTIAL_PREDECESSOR
};
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
/* *ppm read, copy, write* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]);
//void weightsLogger(double *weights, int var);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
//void differentialPredecessor(double *weights);
double *popNAN(double *xError); //return new array without NAN values
double windowXMean(int _arraylength, int xCount);
//int main(int argc, char **argv) {
int main( void ) {
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
char fileName[50];
int i,k, xLength;
imagePixel_t *image;
image = rdPPM("cow.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image);
printf("%d\n", xLength);
FILE* fp6 = fopen(fileName, "r");
colorSamples(fp6);
srand( (unsigned int)time(NULL) );
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
weights[k][i] = rndm(); // Init weights
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
}
}
fclose(fp0);
// math magic
localMean(weights);
directPredecessor(weights);
differentialPredecessor(weights);
mkSvgGraph(points);
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
*/
printf("\nDONE!\n");
}
/*
======================================================================================================
localMean
Variant (1/3), substract local mean.
======================================================================================================
*/
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double *local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
char fileName[50];
double xError[2048]; // includes e(n)
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n=====================================LocalMean=====================================\nNo.\txPredicted\txActual\t\txError\n");
double xMean = xSamples[0];
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { //get predicted value
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { //get xSquared
xSquared += pow(xSamples[xCount - i] - xMean, 2);
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) { //update weights
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
}
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "w");
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
free(local_weights);
fclose(fp4);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
directPredecessor
Variant (2/3),
substract direct predecessor
======================================================================================================
*/
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual = 0.0;
double xPredicted = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp3);
//fclose(fp2);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
differentialPredecessor
variant (3/3),
differential predecessor.
======================================================================================================
*/
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xPredicted = 0.0;
double xActual = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
/* int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
//mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
*/
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
fclose(fp6);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
======================================================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
======================================================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
======================================================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id];
}
/*
======================================================================================================
myLogger
Logs x,y points to svg graph
======================================================================================================
*/
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
fclose(fp);
}
/*
======================================================================================================
bufferLogger
formats output of mkSvgGraph -- Please open graphResults.html to see the output--
======================================================================================================
*/
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPredicted from localMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
}
/*
======================================================================================================
sum_array
Sum of all elements in x within a defined length
======================================================================================================
*/
double sum_array(double x[], int xlength) {
int i = 0;
double sum = 0.0;
if (xlength != 0) {
for (i = 0; i < xlength; i++) {
sum += x[i];
}
}
return sum;
}
/*
======================================================================================================
popNanLength
returns length of new array without NAN values
======================================================================================================
*/
double *popNAN(double *xError) {
int i, counter = 1;
double tmpLength = 0.0;
double *tmp = NULL;
double *more_tmp = NULL;
for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
counter ++;
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
printf("xERROR:%lf\n", tmp[counter - 1]);
tmpLength++;
}
}
counter += 1;
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
tmp = more_tmp;
*tmp = tmpLength; // Length of array has to be stored in tmp[0],
// Cause length is needed later on in the math functions.
// xError counting has to begin with 1 in the other functions !
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
return tmp;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
======================================================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
======================================================================================================
rndm
fills a double variable with random value and returns it
======================================================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
======================================================================================================
mkSvgGraph
parses template.svg and writes results in said template
======================================================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("graphResults.html", "w");
char line[512];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
while (!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line, strlen(line));
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
}
/*
======================================================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
======================================================================================================
*/
static imagePixel_t *rdPPM(char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
======================================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image. Build for debugging
======================================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================================
ppmColorChannel
gets one of the rgb color channels and writes them to a file
======================================================================================================
*/
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
// int length = (image->x * image->y) / 3;
int i = 0;
if (image) {
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
fprintf(fp, "%d\n", image->data[i].green);
}
}
fclose(fp);
return NUMBER_OF_SAMPLES;
}
/*
======================================================================================================
colorSamples
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
======================================================================================================
*/
void colorSamples(FILE* fp) {
int i = 0;
char buffer[NUMBER_OF_SAMPLES];
while (!feof(fp)) {
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i;
}
}
fclose(fp);
}
/*
======================================================================================================
windowXMean
returns mean value of given input, which has a length of WINDOWSIZE
======================================================================================================
*/
double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
sum += *ptr;
}
return sum / (double)_arraylength;
}

View File

@ -1,19 +0,0 @@
## Installation
Use the make file or compile it anywhere else.
`$ make`.
It had to be ANSI C so it even compiles on VS.
## Features
This little piece of code compares 3 different implementations of a least mean square filter.
+ local mean
+ direct predecessor
+ differential predecessor
Greyscale PPM files can be used for input at this iteration. Output will be genreeated as .txt file with predicted value genereated by the filter and its error value as well as given actual value from the PPM file. Furthermore there is an output as an svg graph to compare the implementatiosn on a visual level. Just open __graphResults.html__.
You can hide graphs by clicking on its name for better visibility.
Use `$ ./lms -h` for help.

View File

@ -1,62 +0,0 @@
<!DOCTYPE html>
<html>
<head>
NLMSvariants | Graphical Output ||
<font id="1" color="blue" onclick="clicksvg(this)">Eingangswert</font> |
<font id="2" color="red" onclick="clicksvg(this)">direkter Vorgaenger</font> |
<font id="3" color="green" onclick="clicksvg(this)">letzter Mittelwert</font>
<script>
function clicksvg(e){
id = e.id
graph = document.getElementById("svg_" + id);
if(graph.style.visibility == "hidden" || !graph.style.visibility){
graph.style.visibility = "visible";
}else{
graph.style.visibility = "hidden";
}
}
</script>
</head>
<body>
<svg height="1200" viewBox="100 50 400 -400" width="3000" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<desc>NLMSvariants output graph
</desc>
<defs>
<pattern id="smallGrid" width="10" height="10" patternUnits="userSpaceOnUse">
<path d="M 10 0 L 0 0 0 10" fill="none" stroke="gray" stroke-width="0.5"></path>
</pattern>
<pattern id="grid10" width="100" height="100" patternUnits="userSpaceOnUse">
<rect width="100" height="100" fill="url(#smallGrid)"></rect>
<path d="M 100 0 L 0 0 0 100" fill="none" stroke="gray" stroke-width="1"></path>
</pattern>
</defs>
<rect fill="white" height="1200" width="3000" y="0"></rect>
<rect fill="url(#grid10)" height="1200" width="3000" y="0"></rect>
<g transform="translate(0,0) scale(1, 1)">
<line class="l1 s-black " stroke="black" x1="-200" x2="3000" y1="400" y2="400"></line>
<line class="l1 s-black " stroke="black" x1="200" x2="200" y1="-200" y2="1200"></line>
</g>
<g transform="translate(200, 400) scale(1,-1)">
<path d="M0 0
<text class="t36 t-mid bold f-black" x="50" y="50">+ +</text>
<text class="t36 t-mid bold f-black" x="-50" y="50">- +</text>
<text class="t36 t-mid bold f-black" x="50" y="-50">+ -</text>
<text class="t36 t-mid bold f-black" x="-50" y="-50">- -</text>
</g>
</svg>
<table width = "100%" border = 1>
<tr align = "top">
<td colspan = "2" bgcolor = "#fefefe">
<h1>
<font color="blue">Eingangswert</font> |
<font color="red">direkter Vorgaenger</font> |
<font color="green">letzter Mittelwert</font>
</h1>
</td>
</tr>
</body>
<html>

Binary file not shown.

View File

@ -1,789 +0,0 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
//
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#define NUMBER_OF_SAMPLES 500
#define WINDOWSIZE 5
#define learnrate 0.8
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
enum fileSuffix_t{ // used in conjunction with mkFileName()
PURE_WEIGHTS,
USED_WEIGHTS,
DIRECT_PREDECESSOR,
RESULTS,
LOCAL_MEAN,
TEST_VALUES,
DIFFERENTIAL_PREDECESSOR
};
double xSamples[NUMBER_OF_SAMPLES] = { 0.0 };
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[NUMBER_OF_SAMPLES]; // [0] = xActual, [1]=xpredicted from localMean, [2]=xpredicted from directPredecessor, [3] = xpredicted from differentialpredecessor, [4] = xError from localMean, [5] xError from directPredecessor, [6] xError from differentialPredecessor
/* *ppm read, copy, write* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * rdPPM(char *fileName); // read PPM file format
void mkPpmFile(char *fileName, imagePixel_t *image); // writes PPM file
int ppmColorChannel(FILE* fp, imagePixel_t *image); // writes colorChannel from PPM file to log file
void colorSamples(FILE* fp); // stores color channel values in xSamples[]
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
void mkSvgGraph(point_t points[]);
//void weightsLogger(double *weights, int var);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]);
//void differentialPredecessor(double *weights);
double *popNAN(double *xError); //return new array without NAN values
double windowXMean(int _arraylength, int xCount);
//int main(int argc, char **argv) {
int main( void ) {
double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]; // = { { 0.0 }, {0.0} };
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
char fileName[50];
int i,k, xLength;
imagePixel_t *image;
image = rdPPM("cow.ppm");
mkFileName(fileName, sizeof(fileName), TEST_VALUES);
FILE* fp5 = fopen(fileName, "w");
xLength = ppmColorChannel(fp5, image);
printf("%d\n", xLength);
FILE* fp6 = fopen(fileName, "r");
colorSamples(fp6);
srand( (unsigned int)time(NULL) );
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
weights[k][i] = rndm(); // Init weights
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i < NUMBER_OF_SAMPLES; i++) {
for (k = 0; k < WINDOWSIZE; k++) {
fprintf(fp0, "[%d][%d]%lf\n", k, i, weights[k][i]);
}
}
fclose(fp0);
// math magic
localMean(weights);
directPredecessor(weights);
differentialPredecessor(weights);
mkSvgGraph(points);
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
/* mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
*/
printf("\nDONE!\n");
}
/*
======================================================================================================
localMean
Variant (1/3), substract local mean.
======================================================================================================
*/
void localMean(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
//double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double *local_weights[WINDOWSIZE];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES);
char fileName[50];
double xError[2048]; // includes e(n)
memset(xError, 0.0, NUMBER_OF_SAMPLES);// initialize xError-array with Zero
int xCount = 0, i; // runtime var;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n=====================================LocalMean=====================================\nNo.\txPredicted\txActual\t\txError\n");
double xMean = xSamples[0];
double xSquared = 0.0;
double xPredicted = 0.0;
double xActual = 0.0;
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = ( xCount > WINDOWSIZE ) ? WINDOWSIZE + 1 : xCount;
xMean = (xCount > 0) ? windowXMean(_arrayLength, xCount) : 0;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) { //get predicted value
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
points[xCount].xVal[4] = xCount;
points[xCount].yVal[4] = xError[xCount];
xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) { //get xSquared
xSquared += pow(xSamples[xCount - i] - xMean, 2);
}
if (xSquared == 0.0) { // Otherwise returns Pred: -1.#IND00 in some occassions
xSquared = 1.0;
}
for (i = 1; i < _arrayLength; i++) { //update weights
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xMean) / xSquared);
}
fprintf(fp4, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "w");
fprintf(fp4, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
free(local_weights);
fclose(fp4);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
directPredecessor
Variant (2/3),
substract direct predecessor
======================================================================================================
*/
void directPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual = 0.0;
double xPredicted = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n=====================================DirectPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
//double xPartArray[1000]; //includes all values at the size of runtime var
//int _sourceIndex = (xCount > WINDOWSIZE) ? xCount - WINDOWSIZE : xCount;
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
//printf("xCount:%d, length:%d\n", xCount, _arrayLength);
// printf("WINDOWSIZE:%f\n", windowXMean(_arrayLength, xCount));
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
// weightedSum += _x[ xCount-1 ] * w[xCount][0];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - 1] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
points[xCount].xVal[5] = xCount;
points[xCount].yVal[5] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - 1] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ( (xSamples[xCount - 1] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp3, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp3, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
fclose(fp3);
//fclose(fp2);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
differentialPredecessor
variant (3/3),
differential predecessor.
======================================================================================================
*/
void differentialPredecessor(double weights[WINDOWSIZE][NUMBER_OF_SAMPLES]) {
// double local_weights[WINDOWSIZE][NUMBER_OF_SAMPLES];
double (*local_weights)[WINDOWSIZE] = malloc(sizeof(double) * (WINDOWSIZE+1) * (NUMBER_OF_SAMPLES+1));
memcpy(local_weights, weights, sizeof(double) * WINDOWSIZE * NUMBER_OF_SAMPLES );
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xPredicted = 0.0;
double xActual = 0.0;
// File handling
mkFileName(fileName, sizeof(fileName), DIFFERENTIAL_PREDECESSOR);
FILE *fp6 = fopen(fileName, "w");
fprintf(fp6, "\n=====================================DifferentialPredecessor=====================================\nNo.\txPredicted\txAcutal\t\txError\n");
for (xCount = 1; xCount < NUMBER_OF_SAMPLES; xCount++) { // first value will not get predicted
int _arrayLength = (xCount > WINDOWSIZE) ? WINDOWSIZE + 1 : xCount;
xPredicted = 0.0;
xActual = xSamples[xCount + 1];
for (i = 1; i < _arrayLength; i++) {
xPredicted += (local_weights[i][xCount] * (xSamples[xCount - i] - xSamples[xCount - i - 1]));
}
xPredicted += xSamples[xCount - 1];
xError[xCount] = xActual - xPredicted;
//fprintf(fp6, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[3] = xCount;
points[xCount].yVal[3] = xPredicted;
points[xCount].xVal[6] = xCount;
points[xCount].yVal[6] = xError[xCount];
double xSquared = 0.0;
for (i = 1; i < _arrayLength; i++) {
xSquared += pow(xSamples[xCount - i] - xSamples[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < _arrayLength; i++) {
local_weights[i][xCount+1] = local_weights[i][xCount] + learnrate * xError[xCount] * ((xSamples[xCount - i] - xSamples[xCount - i - 1]) / xSquared);
}
fprintf(fp6, "%d\t%f\t%f\t%f\n", xCount, xPredicted, xActual, xError[xCount]);
}
/* int xErrorLength = sizeof(xError) / sizeof(xError[0]);
printf("vor:%d", xErrorLength);
popNAN(xError);
printf("nach:%d", xErrorLength);
xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
//mkSvgGraph(points);
fprintf(fp6, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
*/
double *xErrorPtr = popNAN(xError); // delete NAN values from xError[]
//printf("%lf", xErrorPtr[499]);
double xErrorLength = *xErrorPtr; // Watch popNAN()!
xErrorPtr[0] = 0.0;
printf("Xerrorl:%lf", xErrorLength);
double mean = sum_array(xErrorPtr, xErrorLength) / xErrorLength;
double deviation = 0.0;
// Mean square
for (i = 1; i < xErrorLength; i++) {
deviation += pow(xError[i] - mean, 2);
}
deviation /= xErrorLength;
printf("mean:%lf, devitation:%lf", mean, deviation);
// write in file
//mkFileName(fileName, sizeof(fileName), RESULTS);
//FILE *fp2 = fopen(fileName, "wa");
fprintf(fp6, "\nQuadratische Varianz(x_error): %f\nMittelwert:(x_error): %f\n\n", deviation, mean);
//fclose(fp2);
fclose(fp6);
free(local_weights);
//weightsLogger( local_weights, USED_WEIGHTS );
}
/*
======================================================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If the total length is longer than max_len,
only max_len characters will be written.
======================================================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
======================================================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
======================================================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt","_testvalues.txt", "_differential_predecessor.txt" };
return suffix[id];
}
/*
======================================================================================================
myLogger
Logs x,y points to svg graph
======================================================================================================
*/
void weightsLogger (double weights[WINDOWSIZE], int val ) {
char fileName[512];
int i;
mkFileName(fileName, sizeof(fileName), val);
FILE* fp = fopen(fileName, "wa");
for (i = 0; i < WINDOWSIZE; i++) {
// for (int k = 0; k < WINDOWSIZE; k++) {
fprintf(fp, "[%d]%lf\n", i, weights[i]);
// }
}
fprintf(fp,"\n\n\n\n=====================NEXT=====================\n");
fclose(fp);
}
/*
======================================================================================================
bufferLogger
formats output of mkSvgGraph -- Please open graphResults.html to see the output--
======================================================================================================
*/
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_1\" stroke=\"black\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { // xPredicted from localMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_2\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= NUMBER_OF_SAMPLES - 1; i++) { //xPreddicted from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_3\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) { //xPredicted from diff Pred
sprintf(_buffer, "L %f %f\n", points[i].xVal[3], points[i].yVal[3]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" id=\"svg_4\" stroke=\"red\" stroke-width=\"0.4px\"/>\n");
}
/*
======================================================================================================
sum_array
Sum of all elements in x within a defined length
======================================================================================================
*/
double sum_array(double x[], int xlength) {
int i = 0;
double sum = 0.0;
if (xlength != 0) {
for (i = 0; i < xlength; i++) {
sum += x[i];
}
}
return sum;
}
/*
======================================================================================================
popNanLength
returns length of new array without NAN values
======================================================================================================
*/
double *popNAN(double *xError) {
int i, counter = 1;
double tmpLength = 0.0;
double *tmp = NULL;
double *more_tmp = NULL;
for ( i = 0; i < NUMBER_OF_SAMPLES; i++ ) {
counter ++;
more_tmp = (double *) realloc ( tmp, counter*(sizeof(double) ));
if ( !isnan(xError[i]) ) {
tmp = more_tmp;
tmp[counter - 1] = xError[i];
printf("xERROR:%lf\n", tmp[counter - 1]);
tmpLength++;
}
}
counter += 1;
more_tmp = (double *) realloc ( tmp, counter * sizeof(double) );
tmp = more_tmp;
*tmp = tmpLength; // Length of array has to be stored in tmp[0],
// Cause length is needed later on in the math functions.
// xError counting has to begin with 1 in the other functions !
printf("tmpLength in tmp:%lf, %lf\n", tmp[counter-2], *tmp);
return tmp;
}
/*
======================================================================================================
r2
returns a random double value between 0 and 1
======================================================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
======================================================================================================
rndm
fills a double variable with random value and returns it
======================================================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
======================================================================================================
mkSvgGraph
parses template.svg and writes results in said template
======================================================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("graphResults_template.html", "r");
FILE *target = fopen("graphResults.html", "w");
char line[512];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
while (!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line, strlen(line));
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
}
/*
======================================================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
======================================================================================================
*/
static imagePixel_t *rdPPM(char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
======================================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new PPM file. Best Case is a
carbon copy of the source image. Build for debugging
======================================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================================
ppmColorChannel
gets one of the rgb color channels and writes them to a file
======================================================================================================
*/
int ppmColorChannel(FILE* fp, imagePixel_t *image) {
// int length = (image->x * image->y) / 3;
int i = 0;
if (image) {
for (i = 0; i < NUMBER_OF_SAMPLES - 1; i++) {
fprintf(fp, "%d\n", image->data[i].green);
}
}
fclose(fp);
return NUMBER_OF_SAMPLES;
}
/*
======================================================================================================
colorSamples
reads colorChannel values from file and stores them in xSamples as well as points datatype for
creating the SVG graph
======================================================================================================
*/
void colorSamples(FILE* fp) {
int i = 0;
char buffer[NUMBER_OF_SAMPLES];
while (!feof(fp)) {
if (fgets(buffer, NUMBER_OF_SAMPLES, fp) != NULL) {
sscanf(buffer, "%lf", &xSamples[i]);
//printf("%lf\n", xSamples[i] );
points[i].yVal[0] = xSamples[i];
points[i].xVal[0] = i;
++i;
}
}
fclose(fp);
}
/*
======================================================================================================
windowXMean
returns mean value of given input, which has a length of WINDOWSIZE
======================================================================================================
*/
double windowXMean(int _arraylength, int xCount) {
double sum = 0.0;
double *ptr;
for (ptr = &xSamples[xCount - _arraylength]; ptr != &xSamples[xCount]; ptr++) { //set ptr to beginning of window
sum += *ptr;
}
return sum / (double)_arraylength;
}

View File

@ -1,674 +0,0 @@
//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
// Copyright © 2018 FBRDNLMS. All rights reserved.
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#include <codecvt> // std::codecvt_utf8_utf16
#include <locale> // std::wstring_convert
#include <string> // std::wstring
#define M 1000
#define tracking 40 //Count of weights
#define learnrate 1.0
#define PURE_WEIGHTS 0
#define USED_WEIGHTS 1
#define RESULTS 3
#define DIRECT_PREDECESSOR 2
#define LOCAL_MEAN 4
#define RGB_COLOR 255
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
double x[] = { 0 };
double _x[M] = { 0 };
double w[M][M] = { { 0 },{ 0 } };
/* UTF-8 to UTF-16 win Format*/
auto wstring_from_utf8(char const* const utf8_string)
-> std::wstring
{
std::wstring_convert< std::codecvt_utf8_utf16< wchar_t > > converter;
return converter.from_bytes(utf8_string);
}
/* *svg graph building* */
typedef struct {
double xVal[7];
double yVal[7];
}point_t;
point_t points[M]; // [0]=xActual, [1]=xPredicted from directPredecessor, [2]=xPredicted from localMean
/* *ppm reader/writer* */
typedef struct {
unsigned char red, green, blue;
}colorChannel_t;
typedef struct {
int x, y;
colorChannel_t *data;
}imagePixel_t;
static imagePixel_t * readPPM(char *fileName);
void mkPpmFile(char *fileNamem, imagePixel_t *image);
int * ppmColorChannel(imagePixel_t *image);
/* *file handling* */
char * mkFileName(char* buffer, size_t max_len, int suffixId);
char *fileSuffix(int id);
void myLogger(FILE* fp, point_t points[]);
#ifdef _WIN32
size_t getline(char **lineptr, size_t *n, FILE *stream);
#endif
void mkSvgGraph(point_t points[]);
/* *rand seed* */
double r2(void);
double rndm(void);
/* *math* */
double sum_array(double x[], int length);
void directPredecessor(void);
void localMean(void);
int main(int argc, char **argv) {
char fileName[50];
int i;
srand((unsigned int)time(NULL));
for (i = 0; i < M; i++) {
_x[i] += ((255.0 / M) * i); // Init test values
for (int k = 0; k < M; k++) {
w[k][i] = rndm(); // Init weights
}
}
mkFileName(fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName, "w");
for (i = 0; i <= tracking; i++) {
for (int k = 0; k < tracking; k++) {
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp0);
// math magic
localMean();
directPredecessor(); // TODO: used_weights.txt has gone missing!
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
mkFileName(fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName, "w");
for (i = 0; i < tracking; i++) {
for (int k = 0; k < tracking; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp1);
// getchar();
printf("DONE!");
}
/*
=======================================================================================
localMean
Variant (1/3), substract local mean.
=======================================================================================
*/
void localMean(void) {
char fileName[50];
double xError[M]; // includes e(n)
memset(xError, 0, M);// initialize xError-array with Zero
int xCount = 0; // runtime var
int i;
mkFileName(fileName, sizeof(fileName), LOCAL_MEAN);
FILE* fp4 = fopen(fileName, "w");
fprintf(fp4, "\n\n\n\n*********************LocalMean*********************\n");
for (xCount = 1; xCount < M; xCount++) {
//double xPartArray[xCount]; //includes all values at the size of runtime var
double xMean = (xCount > 0) ? (sum_array(_x, xCount) / xCount) : 0;// xCount can not be zero
double xPredicted = 0.0;
double xActual = _x[xCount + 1];
for (i = 1; i < xCount; i++) { //get predicted value
xPredicted += (w[i][xCount] * (_x[xCount - i] - xMean));
}
xPredicted += xMean;
xError[xCount] = xActual - xPredicted;
points[xCount].xVal[2] = xCount;
points[xCount].yVal[2] = xPredicted;
double xSquared = 0.0;
for (i = 1; i < xCount; i++) { //get x squared
xSquared = +pow(_x[xCount - i], 2);
}
for (i - 1; i < xCount; i++) { //update weights
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared);
}
fprintf(fp4, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / M;
double deviation = 0.0;
// Mean square
for (i = 0; i < M - 1; i++) {
deviation += pow(xError[i], 2);
}
deviation /= xErrorLength;
// write in file
mkFileName(fileName, sizeof(fileName), RESULTS);
FILE *fp2 = fopen(fileName, "w");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2);
fclose(fp4);
}
/*
===================================
directPredecessor
Variant (2/3),
substract direct predecessor
===================================
*/
void directPredecessor(void) {
char fileName[512];
double xError[2048];
int xCount = 0, i;
double xActual;
// File handling
mkFileName(fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
fprintf(fp3, "\n\n\n\n*********************DirectPredecessor*********************\n");
for (xCount = 1; xCount < M + 1; xCount++) {
xActual = _x[xCount + 1];
double xPredicted = 0.0;
for (i = 1; i < xCount; i++) {
xPredicted += (w[i][xCount] * (_x[xCount - i] - _x[xCount - i - 1]));
}
xPredicted += _x[xCount - 1];
xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
points[xCount].xVal[0] = xCount;
points[xCount].yVal[0] = xActual;
points[xCount].xVal[1] = xCount;
points[xCount].yVal[1] = xPredicted;
double xSquared = 0.0;
for (i = 1; i < xCount; i++) {
xSquared += pow(_x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor
}
for (i = 1; i < xCount; i++) {
w[i][xCount + 1] = w[i][xCount] + learnrate * xError[xCount] * ((_x[xCount - i] - _x[xCount - i - 1]) / xSquared); //TODO: double val out of bounds
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for (i = 0; i < xErrorLength - 1; i++) {
deviation += pow(xError[i] - mean, 2);
}
mkSvgGraph(points);
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3);
}
/*
=========================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If[M ?K the total length is longer than max_len,
only max_len characters will be written.
=========================================================================
*/
char *mkFileName(char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix(suffixId);
time_t now = time(NULL);
strftime(buffer, max_len, format_str, localtime(&now));
date_len = strlen(buffer);
strncat(buffer, suffix, max_len - date_len);
return buffer;
}
/*
=========================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
==========================================================================
*/
char * fileSuffix(int id) {
char * suffix[] = { "_weights_pure.txt", "_weights_used.txt", "_direct_predecessor.txt", "_ergebnisse.txt", "_localMean.txt" };
return suffix[id];
}
/*
==========================================================================
svgGraph
==========================================================================
*/
/*
void Graph ( ) {
char fileName[50];
mkFileName(fileName, sizeof(fileName), GRAPH);
FILE* fp4 = fopen(fileName, "w");
pfrintf
*/
/*
==========================================================================
myLogger
Logs on filepointer, used for svg graphing
==========================================================================
*/
void myLogger(FILE* fp, point_t points[]) {
/*int i;
for (i = 0; i <= M; i++) { // xActual
fprintf(fp, "L %f %f\n", points[i].xVal[0], points[i].yVal[0]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor
fprintf(fp, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
}
fprintf(fp, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean
fprintf(fp, "L %f %f\n", points[i].xVal[2], points[i].yVal[2]);
}*/
}
void bufferLogger(char *buffer, point_t points[]) {
int i;
char _buffer[512] = "";
for (i = 0; i <= M; i++) { // xActual
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" stroke=\"blue\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i < M - 1; i++) { // xPred from directPredecessor
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
strcat(buffer, "\" fill=\"none\" stroke=\"green\" stroke-width=\"0.4px\"/>\n<path d=\"M0 0\n");
for (i = 0; i <= M; i++) { //xPred from lastMean
sprintf(_buffer, "L %f %f\n", points[i].xVal[1], points[i].yVal[1]);
strcat(buffer, _buffer);
}
}
/*
=========================================================================
sum_array
Sum of all elements in x within a defined length
=========================================================================
*/
double sum_array(double x[], int length) {
int i = 0;
double sum = 0.0;
for (i = 0; i< length; i++) {
sum += x[i];
}
return sum;
}
/*
==========================================================================
r2
returns a random double value between 0 and 1
==========================================================================
*/
double r2(void) {
return((rand() % 10000) / 10000.0);
}
/*
==========================================================================
rndm
fills a double variable with random value and returns it
==========================================================================
*/
double rndm(void) {
double rndmval = r2();
return rndmval;
}
/*
==========================================================================
getline
This code is public domain -- Will Hartung 4/9/09 //edited by Kevin Becker
Microsoft Windows is not POSIX conform and does not support getline.
=========================================================================
*/
#ifdef _WIN32
size_t getline(char **lineptr, size_t *n, FILE *stream) {
char *bufptr = NULL;
char *p = bufptr;
size_t size;
int c;
if (lineptr == NULL) {
return -1;
}
if (stream == NULL) {
return -1;
}
if (n == NULL) {
return -1;
}
bufptr = *lineptr;
size = *n;
c = fgetc(stream);
if (c == EOF) {
return -1;
}
if (bufptr == NULL) {
char c[128];
memset(c, 0, sizeof(c));
bufptr = c;
if (bufptr == NULL) {
return -1;
}
size = 128;
}
p = bufptr;
while (c != EOF) {
if ((p - bufptr) > (size - 1)) {
size = size + 128;
realloc(bufptr, size);
if (bufptr == NULL) {
return -1;
}
}
*p++ = c;
if (c == '\n') {
break;
}
c = fgetc(stream);
}
*p++ = '\0';
*lineptr = bufptr;
*n = size;
return p - bufptr - 1;
}
#endif
/*
==========================================================================
mkSvgGraph
parses template.svg and writes results in said template
==========================================================================
*/
void mkSvgGraph(point_t points[]) {
FILE *input = fopen("template.svg", "r");
FILE *target = fopen("output.svg", "w");
char line[512];
// char *ptr;
//size_t len = 0;
//ssize_t read;
//char values[64];
char firstGraph[15] = { "<path d=\"M0 0" };
if (input == NULL) {
exit(EXIT_FAILURE);
}
char buffer[131072] = "";
memset(buffer, '\0', sizeof(buffer));
//int length = 0;
while(!feof(input)) {
fgets(line, 512, input);
strncat(buffer, line,strlen(line));
printf("%s\n", line);
if (strstr(line, firstGraph) != NULL) {
bufferLogger(buffer, points);
}
}
fprintf(target, buffer);
//int c = 0;
puts(buffer);
//getchar();
//if (strstr(line, firstGraph) != NULL) {
// //fprintf(target,"HECK!!!\n");
// bufferLogger(strstr(line, firstGraph),sizeof(firstGraph), points);
//}
/*while ((read = getline(&line, &len, input)) != -1) {
//printf("Retrieved line of length %zu :\n", read);
//puts(line); // debug purpose
fprintf(target, "%s", line);
if (strstr(line, firstGraph) != NULL) {
fprintf(target,"HECK!!!\n");
myLogger(target, points);
}
}*/
/*free(line);
free(target);
free(input);*/
//exit(EXIT_SUCCESS);
}
/*
===========================================================================
rdPPM
reads data from file of type PPM, stores colorchannels in a struct in the
size of given picture
==========================================================================
*/
static imagePixel_t *rdPPM(const char *fileName) {
char buffer[16];
imagePixel_t *image;
int c, rgbColor;
FILE *fp = fopen(fileName, "rb");
if (!fp) {
exit(EXIT_FAILURE);
}
if (!fgets(buffer, sizeof(buffer), fp)) {
perror(fileName);
exit(EXIT_FAILURE);
}
if (buffer[0] != 'P' || buffer[1] != '6') {
fprintf(stderr, "No PPM file format\n");
exit(EXIT_FAILURE);
}
image = (imagePixel_t *)malloc(sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
}
c = getc(fp);
while (c == '#') {
while (getc(fp) != '\n');
c = getc(fp);
}
ungetc(c, fp);
if (fscanf(fp, "%d %d", &image->x, &image->y) != 2) {
fprintf(stderr, "Invalid image size in %s\n", fileName);
exit(EXIT_FAILURE);
}
if (fscanf(fp, "%d", &rgbColor) != 1) {
fprintf(stderr, "Invalid rgb component in %s\n", fileName);
}
if (rgbColor != RGB_COLOR) {
fprintf(stderr, "Invalid image color range in %s\n", fileName);
exit(EXIT_FAILURE);
}
while (fgetc(fp) != '\n');
image->data = (colorChannel_t *)malloc(image->x * image->y * sizeof(imagePixel_t));
if (!image) {
fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);
}
if (fread(image->data, 3 * image->x, image->y, fp) != image->y) {
fprintf(stderr, "Loading image failed");
exit(EXIT_FAILURE);
}
fclose(fp);
return image;
}
/*
=======================================================================================
mkPpmFile
gets output from the result of rdPpmFile and writes a new mkPpmFile. Best Case is a
carbon copy of the source image
=======================================================================================
*/
void mkPpmFile(char *fileName, imagePixel_t *image) {
FILE* fp = fopen(fileName, "wb");
if (!fp) {
fprintf(stderr, "Opening file failed.");
exit(EXIT_FAILURE);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", image->x, image->y);
fprintf(fp, "%d\n", RGB_COLOR);
fwrite(image->data, 3 * image->x, image->y, fp);
fclose(fp);
}
/*
======================================================================================
ppmColorChannel
gets one of the rgb color channels and returns the array
======================================================================================
*/
int * ppmColorChannel(imagePixel_t *image) {
int length = (image->x * image->y) / 3;
int i = 0;
int buffer[10];
realloc(buffer,length);
printf("%d\n", length);
if (image) {
for (i = 0; i < length; i++) {
buffer[i] = image->data[i].green;
//output[i] = image->data[i].blue;
//output[i] = image->data[i].red;
}
}
return buffer;
}

View File

@ -1,446 +0,0 @@
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
namespace NMLS_Graphisch
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
static int NumberOfSamples = 1000;
const int tracking = 40;
static Stack<double> x = new Stack<double>();
static Random rnd = new Random();
static double[] _x = new double[NumberOfSamples];
static double[,] w = new double[NumberOfSamples, NumberOfSamples];
static double learnrate = 0.2;
static double[] pixel_array;
static int windowSize = 5;
private void button1_Click(object sender, EventArgs e)
{
NumberOfSamples = Int32.Parse(comboBox2.SelectedItem.ToString());
chart1.ChartAreas[0].AxisX.Maximum = NumberOfSamples;
chart1.ChartAreas[0].AxisY.Maximum = 300;
chart1.ChartAreas[0].AxisY.Minimum = -5;
if (checkBox1.Checked)
{
for (int i = 0; i < tracking; i++)
{
for (int k = 0; k < windowSize; k++)
{
File.AppendAllText("weights.txt",
String.Format("[{0}][{1}] {2}\n", k, i, Math.Round(w[k, i], 2).ToString()),
Encoding.UTF8);
}
}
}
Series[] series = new Series[2];
switch (comboBox1.SelectedItem.ToString())
{
case "lokaler Mittelwert":
series = lokalerMittelWert();
break;
case "direkter Vorgänger":
series = direkterVorgaenger();
break;
case "differenzieller Vorgänger":
series = diffVorgaenger();
break;
default:
return;
}
foreach (Series s in series)
{
if (chart1.Series.IndexOf(s.Name) < 0)
{
chart1.Series.Add(s);
}
else
{
chart1.Series.RemoveAt(chart1.Series.IndexOf(s.Name));
chart1.Series.Add(s);
}
}
if (checkBox1.Checked)
{
for (int i = 0; i < tracking; i++)
{
for (int k = 0; k < windowSize; k++)
{
File.AppendAllText("weights_after.txt",
String.Format("[{0}][{1}] {2}\n", k, i, Math.Round(w[k, i], 2).ToString()),
Encoding.UTF8);
}
}
}
}
Series[] lokalerMittelWert()
{
int x_count = 0;
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
//Graphischer Stuff
Series lokal_M_error = new Series("Lokaler Mittelwert Error");
Series lokal_M_predic = new Series("Lokaler Mittelwert Prediction");
lokal_M_error.ChartType = SeriesChartType.Spline;
lokal_M_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double[] x_part_Array = new double[x_count];
int _sourceIndex = (x_count > windowSize) ? x_count - windowSize : 0;
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : (x_count > 0) ? x_count : 0;
Array.Copy(_x, _sourceIndex, x_part_Array, 0, _arrayLength);
double x_middle = (x_count > 0) ? ( x_part_Array.Sum() / _arrayLength) : 0;
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_middle));
}
x_pred += x_middle;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
double x_square = 0;
//Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("lokalerMittelwert.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - i] - x_middle, 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_middle) / x_square);
}
// Graphischer Stuff
lokal_M_error.Points.AddXY(x_count, x_error[x_count]);
lokal_M_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if(!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { lokal_M_predic, lokal_M_error };
}
Series[] direkterVorgaenger()
{
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
int x_count = 0;
// Graphischer Stuff
Series direkterVorgaenger_error = new Series("Direkter Vorgänger Error");
Series direkterVorgaenger_predic = new Series("Direkter Vorgänger Prediction");
direkterVorgaenger_error.ChartType = SeriesChartType.Spline;
direkterVorgaenger_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
if (x_count > 0)
{
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count;
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - 1] - x_array[x_count - i - 1]));
}
x_pred += x_array[x_count - 1];
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("direkterVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
double x_square = 0;
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - 1] - x_array[x_count - i - 1], 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - 1] - x_array[x_count - i - 1]) / x_square);
}
}
//Graphischer Stuff
direkterVorgaenger_error.Points.AddXY(x_count, x_error[x_count]);
direkterVorgaenger_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if (!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { direkterVorgaenger_error, direkterVorgaenger_predic };
}
Series[] diffVorgaenger()
{
double[] x_error = new double[NumberOfSamples];
x_error[0] = 0;
int x_count = 1;
//Graphischer Stuff
Series diffVorgaenger_error = new Series("Differenzieller Vorgänger Error");
Series diffVorgaenger_predic = new Series("Differenzieller Vorgänger Prediction");
diffVorgaenger_error.ChartType = SeriesChartType.Spline;
diffVorgaenger_predic.ChartType = SeriesChartType.Spline;
while (x_count + 1 < NumberOfSamples)
{
double x_pred = 0.0;
double[] x_array = _x;
double x_actual = _x[x_count + 1];
if (x_count > 0)
{
int _arrayLength = (x_count > windowSize) ? windowSize + 1 : x_count;
for (int i = 1; i < _arrayLength; i++)
{
x_pred += (w[i, x_count] * (x_array[x_count - i] - x_array[x_count - i - 1]));
}
x_pred += x_array[x_count - 1];
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_pred {1}\n", x_count, x_pred),
Encoding.UTF8);
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_actual {1}\n", x_count, x_actual),
Encoding.UTF8);
}
x_error[x_count] = x_actual - x_pred;
// Output Stuff
if (checkBox1.Checked)
{
File.AppendAllText("differenziellerVorgaenger.txt",
String.Format("{0}. X_error {1}\n\n", x_count, x_error[x_count]),
Encoding.UTF8);
}
double x_square = 0;
for (int i = 1; i < _arrayLength; i++)
{
x_square += Math.Pow(x_array[x_count - i] - x_array[x_count - i - 1], 2);
}
for (int i = 1; i < _arrayLength; i++)
{
w[i, x_count + 1] = w[i, x_count] + learnrate * x_error[x_count] * ((x_array[x_count - i] - x_array[x_count - i - 1]) / x_square);
}
}
//Graphischer Stuff
diffVorgaenger_error.Points.AddXY(x_count, x_error[x_count]);
diffVorgaenger_predic.Points.AddXY(x_count, x_pred);
x_count += 1;
}
double mittel = x_error.Where(d => !double.IsNaN(d)).Sum() / x_error.Length;
double varianz = 0.0;
foreach (double x_e in x_error)
{
if (!double.IsNaN(x_e))
varianz += Math.Pow(x_e - mittel, 2);
}
varianz /= x_error.Length;
if (checkBox1.Checked)
{
File.AppendAllText("ergebnisse.txt",
String.Format("Quadratische Varianz(x_error): {0}\n Mittelwert(x_error): {1}\n\n", varianz, mittel),
Encoding.UTF8);
}
return new Series[] { diffVorgaenger_error, diffVorgaenger_predic };
}
// Inizialisierung von Arrays
private void Form1_Load(object sender, EventArgs e)
{
comboBox1.SelectedIndex = 0;
comboBox2.SelectedIndex = 0;
chart1.Series.Clear();
Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline;
for (int i = 0; i < NumberOfSamples; i++)
{
_x[i] += ((255.0 / NumberOfSamples) * i);
for (int k = 0; k < windowSize; k++)
{
w[k, i] = rnd.NextDouble();
//Console.WriteLine(String.Format("Weight[{0}, {1}]: {2}",k,i, w[k, i]));
}
x_actual.Points.AddXY(i, _x[i]);
}
chart1.Series.Add(x_actual);
}
// Graphen Clearen
private void button2_Click(object sender, EventArgs e)
{
chart1.Series.Clear();
Series x_actual = new Series("Actual x Value");
x_actual.ChartType = SeriesChartType.Spline;
for (int i = 0; i < NumberOfSamples; i++)
{
x_actual.Points.AddXY(i, _x[i]);
}
chart1.Series.Add(x_actual);
}
// Bild Laden
private void button3_Click(object sender, EventArgs e)
{
OpenFileDialog openFileDialog = new OpenFileDialog();
if(openFileDialog.ShowDialog() == DialogResult.OK)
{
try
{
Bitmap img = new Bitmap(openFileDialog.FileName);
pixel_array = new double[img.Width * img.Height];
for (int i = 1; i < img.Width; i++)
{
for (int j = 1; j < img.Height; j++)
{
Color pixel = img.GetPixel(i, j);
pixel_array[j*i] = pixel.R;
}
}
NumberOfSamples = (img.Width * img.Height) / 2;
comboBox2.Items.Add(NumberOfSamples);
_x = pixel_array;
w = new double[NumberOfSamples, NumberOfSamples];
for (int i = 0; i < NumberOfSamples; i++)
{
for (int k = 1; k < NumberOfSamples; k++)
{
w[k, i] = rnd.NextDouble();
}
}
}
catch(Exception exep)
{
MessageBox.Show("Konnte Bild nicht laden.");
MessageBox.Show(String.Format("{0}", exep.ToString()));
}
}
}
}
}

BIN
src/.DS_Store vendored

Binary file not shown.