NLMSvariants/bin/NLMSvariants.c

328 lines
7.5 KiB
C

//
//
// NLMSvariants.c
//
// Created by FBRDNLMS on 26.04.18.
// Copyright © 2018 FBRDNLMS. All rights reserved.
//
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <float.h> // DBL_MAX
#define M 1000
#define tracking 40 //Count of weights
#define learnrate 1.0
#define PURE_WEIGHTS 0
#define USED_WEIGHTS 1
#define RESULTS 2
#define DIRECT_PREDECESSOR 3
double x[] = {0};
double _x[M] = {0};
double w [M][M]={{0},{0}};
/* *file handling* */
char * mkFileName( char* buffer, size_t max_len, int suffixId );
char *fileSuffix( int id );
void myLogger( FILE* fp, int myVar);
/* *rand seed functions* */
double r2( void );
double rndm( void );
/* *math functions * */
double sum_array( double x[], int length );
void directPredecessor( void );
void localMean( void );
int main(int argc, char **argv ) {
char fileName[50];
int i;
srand( (unsigned int) time(NULL) );
for (i = 0; i < M; i++) {
_x[i] += ((255.0 / M) * i); // Init test values
for (int k = 1; k < M; k++){
w[k][i] = rndm(); // Init weights
}
}
mkFileName( fileName, sizeof(fileName), PURE_WEIGHTS);
// save plain test_array before math magic happens
FILE *fp0 = fopen(fileName,"w");
for (i = 0; i < tracking; i++){
for ( int k = 1; k < tracking; k++ ){
fprintf(fp0, "[%d][%d] %lf\n", k, i, w[k][i]);
}
}
fclose(fp0);
// math magic
//directPredecessor(); // TODO: needs some love!
localMean();
// save test_array after math magic happened
// memset( fileName, '\0', sizeof(fileName) );
mkFileName( fileName, sizeof(fileName), USED_WEIGHTS);
FILE *fp1 = fopen(fileName,"w");
for (i = 0; i < tracking; i++) {
for (int k = 1; k < tracking; k++) {
fprintf(fp1, "[%d][%d] %lf\n", k,i, w[k][i]);
}
}
fclose(fp1);
// getchar();
printf("DONE!");
}
/*
=======================================================================================
localMean
Variant (1/3), substract local mean.
=======================================================================================
*/
void localMean( void ) {
char fileName[50];
double xError[M]; // includes e(n)
memset(xError, 0, M);// initialize xError-array with Zero
int xCount = 0; // runtime var
int i;
for (xCount = 1; xCount < M; xCount++){
//double xPartArray[xCount]; //includes all values at the size of runtime var
double xMean = ( xCount > 0 ) ? ( sum_array(_x, xCount) / xCount ) : 0;// xCount can not be zero
double xPredicted = 0.0;
double xActual = _x[xCount + 1];
for ( i = 1; i < xCount; i++ ){ //get predicted value
xPredicted += ( w[i][xCount] * ( _x[xCount - i] - xMean )) ;
}
xPredicted += xMean;
xError [xCount] = xActual - xPredicted;
double xSquared = 0.0;
for ( i = 1; i < xCount; i++ ){ //get x squared
xSquared =+ pow(_x[xCount-i],2);
}
for ( i - 1; i < xCount; i++ ){ //update weights
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * (_x[xCount - i] / xSquared);
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / M;
double deviation = 0.0;
// Mean square
for( i = 0; i < M - 1; i++ ){
deviation += pow( xError[i], 2 );
}
deviation /= xErrorLength;
// write in file
mkFileName( fileName, sizeof(fileName), RESULTS );
FILE *fp2 = fopen(fileName, "w+");
fprintf(fp2, "quadr. Varianz(x_error): {%f}\nMittelwert:(x_error): {%f}\n\n", deviation, mean);
fclose(fp2);
}
/*
===================================
directPredecessor
Variant (2/3),
substract direct predecessor
===================================
*/
void directPredecessor( void ) {
char fileName[50];
double xError [M];
int xCount = 0, i;
double xActual;
// File handling
mkFileName( fileName, sizeof(fileName), DIRECT_PREDECESSOR);
FILE *fp3 = fopen(fileName, "w");
for ( xCount = 1; xCount < M+1; xCount++ ){
xActual = _x[xCount+1];
double xPredicted = 0.0;
for ( i = 1; i < xCount; i++ ){
xPredicted += ( w[i][xCount] * ( _x[xCount - i] - _x[xCount - i - 1] ));
}
xPredicted += _x[xCount-1];
xError[xCount] = xActual - xPredicted;
fprintf(fp3, "{%d}.\txPredicted{%f}\txActual{%f}\txError{%f}\n", xCount, xPredicted, xActual, xError[xCount]);
double xSquared = 0.0;
//get x squared
for ( i = 1; i < xCount; i++ ){
xSquared += pow( _x[xCount - i] - _x[xCount - i - 1], 2); // substract direct predecessor
}
for ( i = 1; i < xCount; i++){
w[i][xCount+1] = w[i][xCount] + learnrate * xError[xCount] * ( ( _x[xCount - i - 1] ) / xSquared ); //TODO: double val out of bounds
}
}
int xErrorLength = sizeof(xError) / sizeof(xError[0]);
double mean = sum_array(xError, xErrorLength) / xErrorLength;
double deviation = 0.0;
for ( i = 0; i < xErrorLength -1; i++ ){
deviation += pow( xError[i] - mean, 2);
}
fprintf(fp3, "{%d}.\tLeast Mean Squared{%f}\tMean{%f}\n\n", xCount, deviation, mean);
fclose(fp3);
}
/*
=========================================================================
mkFileName
Writes the current date plus the suffix with index suffixId
into the given buffer. If[M ?K the total length is longer than max_len,
only max_len characters will be written.
=========================================================================
*/
char *mkFileName( char* buffer, size_t max_len, int suffixId) {
const char * format_str = "%Y-%m-%d_%H_%M_%S";
size_t date_len;
const char * suffix = fileSuffix( suffixId );
time_t now = time(NULL);
strftime( buffer, max_len, format_str, localtime(&now) );
date_len = strlen(buffer);
strncat( buffer, suffix, max_len - date_len );
}
/*
=========================================================================
fileSuffix
Contains and returns every suffix for all existing filenames
==========================================================================
*/
char * fileSuffix( int id ) {
char * suffix[] = {"_weights_pure.txt", "_weights_used.txt", "direct_predecessor.txt", "ergebnisse.txt"};
return suffix[id];
}
/*
==========================================================================
myLogger
Pipes to stdout or files by using a filepointer for logging purposes
==========================================================================
*/
void myLogger ( FILE* fp, int myVar ){
fprintf( fp, "Logging: %d\n", myVar);
}
/*
=========================================================================
sum_array
Sum of all elements in x within a defined length
=========================================================================
*/
double sum_array( double x[], int length ){
int i = 0;
double sum = 0.0;
for( i=0; i< length; i++ ) {
sum += x[i];
}
return sum;
}
/*
==========================================================================
r2
returns a random double value between 0 and 1
==========================================================================
*/
double r2( void ) {
return((rand() % 10000) / 10000.0);
}
/*
==========================================================================
rndm
fills a double variable with random value and returns it
=========================================================================
*/
double rndm( void ) {
double rndmval= r2();
return rndmval;
}