updated rsa
This commit is contained in:
parent
3b6f769f1a
commit
92728599a8
|
@ -24,6 +24,20 @@ for i in range (phi + 1, phi + foo):
|
||||||
* \\( Cleartext = cipher ** e mod $\phi$ )
|
* \\( Cleartext = cipher ** e mod $\phi$ )
|
||||||
|
|
||||||
## Euklid
|
## Euklid
|
||||||
|
|
||||||
|
Just a short excourse:
|
||||||
|
A greatest common divisior out of an example a = 32 and b = 14 would be the groups of the following divisors
|
||||||
|
```sh
|
||||||
|
a = 32, b = 24
|
||||||
|
a = {1, 2, 4, 8, 16}
|
||||||
|
b = {1, 2, 3, 8, 12}
|
||||||
|
gcd(a,b) = 8
|
||||||
|
```
|
||||||
|
|
||||||
|
### Greatest Common Divisor (GCD)
|
||||||
|
|
||||||
|
Two values are prime and have themselves and only `1` as a divisor are called coprime.
|
||||||
|
To check if a and b have a greatest common divisor do the euclidean algorithm.
|
||||||
```python
|
```python
|
||||||
def gcd(a, b):
|
def gcd(a, b):
|
||||||
if b == 0:
|
if b == 0:
|
||||||
|
@ -31,6 +45,12 @@ def gcd(a, b):
|
||||||
return gcd(b, a % b)
|
return gcd(b, a % b)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Extended GCD
|
||||||
|
|
||||||
|
#TODO
|
||||||
|
|
||||||
|
|
||||||
## Links
|
## Links
|
||||||
|
|
||||||
* [Encryption+Decryption](https://www.cs.drexel.edu/~jpopyack/Courses/CSP/Fa17/notes/10.1_Cryptography/RSA_Express_EncryptDecrypt_v2.html)
|
* [Encryption+Decryption](https://www.cs.drexel.edu/~jpopyack/Courses/CSP/Fa17/notes/10.1_Cryptography/RSA_Express_EncryptDecrypt_v2.html)
|
||||||
|
* [Extended GCD](http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html)
|
||||||
|
|
Loading…
Reference in New Issue