update RSA
This commit is contained in:
parent
d9faa96cd0
commit
f0c8c158b4
|
@ -82,6 +82,47 @@ $n^{p-2} \equiv n^{-1}\ mod\ p$
|
||||||
$m$ is a quadratic residue when $\pm n^2 = m\ mod\ p$ with two solutions.
|
$m$ is a quadratic residue when $\pm n^2 = m\ mod\ p$ with two solutions.
|
||||||
Otherwise it is a quadratic non residue.
|
Otherwise it is a quadratic non residue.
|
||||||
|
|
||||||
|
So a porperty of quad res are, if Quadratic Residue $QR = 1$ and Quadratic NonResidue $QN = -1$
|
||||||
|
|
||||||
|
$$
|
||||||
|
QR * QR = QR\\
|
||||||
|
QR * QN = QN\\
|
||||||
|
QN * QN = QR\\
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Legendre
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{a}{p} =
|
||||||
|
\begin{cases}
|
||||||
|
1, & if\ a\ quadratic\ residue\ mod\ p\ and\ not\ a\ \equiv\ 0\ (mod\ p),\\
|
||||||
|
-1, & if\ a\ is\ a\ non\ residue\ mod\ p,\\
|
||||||
|
0, & if\ a\ \equiv 0\ (mod\ p)\\
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{a}{p} \equiv a^{p-1/2}\ (mod\ p)\ and\ \frac{a}{p} \in \{-1,0,1\}
|
||||||
|
$$
|
||||||
|
|
||||||
|
* Legendre Symbol test via Python with
|
||||||
|
```python
|
||||||
|
pow(a,(p-1)/2,p)
|
||||||
|
```
|
||||||
|
|
||||||
|
[Finding the square root of integer a which is quadratic residue](http://mathcenter.oxford.emory.edu/site/math125/findingSquareRoots/)
|
||||||
|
|
||||||
|
* Given $p \equiv 3\ mod\ 4$ the square root is calculated through
|
||||||
|
```python
|
||||||
|
pow(a,((p+1)//4),p)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Tonelli-Shanks - Modular Square Root
|
||||||
|
|
||||||
|
* Find elliptic curve co-ordinates
|
||||||
|
* Precondition: modulus is not a prime
|
||||||
|
* TBD
|
||||||
|
|
||||||
## Links
|
## Links
|
||||||
|
|
||||||
* [Encryption+Decryption](https://www.cs.drexel.edu/~jpopyack/Courses/CSP/Fa17/notes/10.1_Cryptography/RSA_Express_EncryptDecrypt_v2.html)
|
* [Encryption+Decryption](https://www.cs.drexel.edu/~jpopyack/Courses/CSP/Fa17/notes/10.1_Cryptography/RSA_Express_EncryptDecrypt_v2.html)
|
||||||
|
|
Loading…
Reference in New Issue